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Preface 

Within the framework of the classical linear model it is a fairly 
straightforward matter to establish the properties of the ordinary 
least squares (OLS) and generalized least squares (GLS) estimators 
for samples of any size. Although the classical linear model is an 
excellent framework for developing a feel for the statistical tech-
niques of estimation and inference that are central to econometrics, 
it is not particularly well adapted to the study of economic phenom-
ena, because economists usually cannot conduct controlled experi-
ments. Instead, the data usually exist as the outcome of a stochastic 
process outside the control of the investigator. For this reason, both 
the dependent and the explanatory variables may be stochastic, and 
equation disturbances may exhibit nonnormality or heteroskedastic-
ity and serial correlation of unknown form, so that the classical as-
sumptions are violated. Over the years a variety of useful techniques 
has evolved to deal with these difficulties. Many of these amount to 
straightforward modifications or extensions of the OLS techniques 
(e.g., the Cochrane-Orcutt technique, two-stage least squares, and 
three-stage least squares). However, the finite sample properties of 
these statistics are rarely easy to establish outside of somewhat 
limited special cases. Instead, their usefulness is justified primarily 
on the basis of their properties in large samples, because these prop-
erties can be fairly easily established using the powerful tools pro-
vided by laws of large numbers and central limit theory. 

Despite the importance of large sample theory, it has usually re-
ceived fairly cursory treatment in even the best econometrics text-
books. This is really no fault of the textbooks, however, because the 
field of asymptotic theory has been developing rapidly. It is only 
recently that econometricians have discovered or established meth-
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χ Preface 

ods for treating adequately and comprehensively the many different 
techniques available for dealing with the difficulties posed by eco-
nomic data. 

This book is intended to provide a somewhat more comprehensive 
and unified treatment of large sample theory than has been available 
previously and to relate the fundamental tools of asymptotic theory 
directly to many of the estimators of interest to econometricians. In 
addition, because economic data are generated in a variety of differ-
ent contexts (time series, cross sections, time series-cross sections), 
we pay particular attention to the similarities and differences in the 
techniques appropriate to each of these contexts. 

That it is possible to present our results in a fairly unified manner 
highlights the similarities among a variety of different techniques. It 
also allows us in specific instances to establish results that are some-
what more general than those previously available. We thus include 
some new results in addition to those that are better known. 

This book is intended for use both as a reference and as a textbook 
for graduate students taking courses in econometrics beyond the 
introductory level. It is therefore assumed that the reader is familiar 
with the basic concepts of probability and statistics as well as with 
calculus and linear algebra and that the reader also has a good under-
standing of the classical linear model. 

Because our goal here is to deal primarily with asymptotic theory, 
we do not consider in detail the meaning and scope of econometric 
models per se. Therefore, the material in this book can be usefully 
supplemented by standard econometrics texts, particularly any of 
those listed at the end of Chapter I. 

I would like to express my appreciation to all those who have 
helped in the evolution of this work. In particular, I would like to 
thank Charles Bates, Ian Domowitz, Rob Engle, Clive Granger, 
Lars Hansen, David Hendry, and Murray Rosenblatt. Particular 
thanks are due Jeff Wooldridge for his work in producing the solution 
set for the exercises. I also thank the students in various graduate 
classes at UCSD, who have served as unwitting and indispensable 
guinea pigs in the development of this material. I am deeply grate-
ful to Annetta Whiteman, who typed this difficult manuscript with 
incredible swiftness and accuracy. Finally, I would like to thank the 
National Science Foundation for providing financial support for this 
work under grant SES81-07552. 



C H A P T E R I 

The Linear Model and Instrumental 
Variables Estimators 

The purpose of this book is to provide the reader with the tools and 
concepts needed to study the behavior of econometric estimators and 
test statistics in large samples. Throughout, attention will be directed 
to estimation and inference in the framework of a linear model such as 

y, = Xjff0 + €„ t= 1, . . . , n, 

where we have η observations on the dependent variable y, and the 
explanatory variables X, = ( X n , Xt2, . . . , Xtk). The stochastic 
disturbance et is unobserved, and ßQ is an unknown k X 1 vector of 
parameters that we are interested in learning about, either through 
estimation or through hypothesis testing. In matrix notation this 
model is written as 

y = XÂ, + €, 

where y is an η X 1 vector, X an η X k matrix, ßQ a k X 1 vector, and € 
an η X 1 vector. 

Almost all econometric estimators can be viewed as solutions to an 
optimization problem. For example, the ordinary least squares esti-
mator is the value for β that minimizes the sum of squared residuals 

SSR(ß) = (y-XßY(y-Xß) 

= £ ( y , - X , / ? ) 2 . 
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2 I. The Linear Model and Instrumental Variables Estimators 

The first-order conditions for a minimum are 

SSR(/i)/j? = - 2 X ' ( y - X / ? ) 

= - 2 2X,'(y,-X,/i) = 0. 

If X'X = X{L, Χ,'Χ, is nonsingular, this system of k equations in k 
unknowns can be uniquely solved for the ordinary least squares (OLS) 
estimator 

A = (X'xr ! x 'y 

= (ix<'x<) ! Σ χ ί κ · 

Our interest centers on the behavior of estimators such as βη as η 
grows larger and larger. We seek conditions that will allow usto draw 
conclusions about the behavior of βη\ for example, that βη has a 
particular distribution or certain first and second moments. 

The assumptions of the classical linear model allow us to draw such 
conclusions for any n. These conditions and results can be formally 
stated as the following theorem. 

THEOREM 1.1: The following are the assumptions of the classical 
linear model. 

(i) The model is known to be y = Xß0 + €,#,< ». 
(ii) X is a nonstochastic and finite nX k matrix. 
(iii) X'X is nonsingular for all η ^ k. 
(iv) E(e) = 0. 
(ν) €~Ν(0,σ2

ο1),σ2

ο<°ο. 
(a) (Existence) Given (i)-(iii), βη exists for all η ^ k and is 

unique. 
(b) (Unbiasedness) Given (i)-(iv), E(ßn) = ß Q . 
(c) (Normality) Given (i)-(v), βη - Ν(β0, (^(X'X)"1). 
(d) (Efficiency) Given (i)-(v), βη is the maximum likeli-

hood estimator and is the best unbiased estimator in the 
sense that the variance - c o variancejnatrix of any other 
unbiased estimator exceeds that of βη by a positive semi-
definite matrix, regardless of the value of β0. 

Proof: See Theil [1971, Ch. 3]. 
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In the statement of the assumptions above, E( · ) denotes the ex-
pected value operator, and e ~ N(0, all) means that e is distributed as 
(~) multivariate normal with mean vector zero and covariance matrix 
all. 

The properties of existence, unbiasedness, normality, and efficiency 
of an estimator are the small sample analogs of the properties that will 
be the focus of interest here. Unbiasedness tells us that the distribu-
tion of ßn is centered around the unknown true value ßö, whereas the 
normality property allows us to construct confidence intervals and test 
hypotheses using the /- or ^-distributions (see Theil [1971, pp. 
130 -146]). The efficiency property guarantees that our estimator has 
the greatest possible precision within a given class of estimators and 
also helps ensure that tests of hypotheses have high power. 

Of course, the classical assumptions are rather stringent and can 
easily fail in situations faced by economists. Since failures of assump-
tions (iii) and (iv) are easily remedied (exclude linearly dependent 
regressors if (iii) fails, include a constant in the model if (iv) fails), we 
will concern ourselves primarily with the failure of assumptions (ii) 
and (v). The possible failure of assumption (i) is a subject that requires 
a book in itself and will not be considered here. Nevertheless, the 
tools developed in this book will be essential to understanding and 
treating the consequences of the failure of assumption (i). 

Let us briefly examine the consequences of various failures of 
assumptions (ii) or (v). First, suppose that € exhibits heteroskedasti-
city or serial correlation, so that £"(€€0 = Ω Φ all. We have the 
following result for the OLS estimator. 

THEOREM 1.2: Suppose the classical assumptions (i)-(iv) hold but 
replace (v) with 

( ν ) € - N(0, Ω), Ω < oo. 

Then (a) and (b) hold as before, (c) is replaced by 

(c ') (Normality) Given (i) - (ν '), 

ßn ~ N(Ä, (X'X)- 1 ΧΉΧ (Χ'ΧΓ 1) , 

and (d) does not hold, that is, βη is no longer the best unbiased 
estimator. 

Proof: By definition, & = (X'X^X'y . Given (i), 
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where (X'X) _ 1X'€ is a linear combination of jointly normal random 
variables and is therefore jointly normal with 

E((X'X)-lX'e) = (X'X)-lX'E(e) = 0, 

given (ii) and (iv) and 

varCX'Xr'X'e = ^((Χ'ΧΓ'Χ'ββ'ΧίΧ'ΧΓ 1) 

= (X'Xr'XTteeOXCX'X)"1 

= ( Χ , Χ ) - 1 Χ , Ω Χ ( Χ , Χ Γ 1 , 

given (ii) and (ν'). Henceßn ~ N(ßQ, (Χ'ΧΓ'ΧΉΧίΧ'Χ)" 1). That 
(d) does not hold follows because there exists an unbiased estimator 
with smaller co variance matrix than βη9 namely, β* = 
( Χ Ώ _ , Χ ) _ 1 Χ Ώ " ^ . We examine its properties next. 

As long as Ω is known, the presence of serial correlation or hetero-
skedasticity does not render us incapable of testing hypotheses or 
constructing confidence intervals. This can still be done using (c')5 

although the failure of (d) indicates that the OLS estimator may not be 
best for these purposes. However, if Ω is unknown (apart from a 
factor of proportionality), testing hypotheses and constructing confi-
dence intervals is no longer a simple matter. One might be able to 
construct tests based on estimates of Ω, but the resulting statistics may 
have very complicated distributions. As we shall see in Chapter VI, 
this difficulty is lessened in large samples by the availability of conve-
nient approximations based on the central limit theorem and laws of 
large numbers. 

If Ω is known, efficiency can be regained by applying OLS to a linear 
transformation of the original model, i.e., 

C- 1y = C"1X)30 + C- 1€ 

or 

y* = X*)?0 + €*, 

where y* = C _ 1y, X* = C _ 1X, €* = C _ 1€ and C is a nonsingular 
factorization οΐΩsuch thatCC = Ω a n d C - 1 Ω C - 1 ' = I . Thistrans-
formation ensures that £(e*€* ') = E(C-le€'C~l 7) = C ^ ^ O C " 1 ' = 
C~lQC~u = I , so that assumption (v) once again holds. The least 
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squares estimator for the transformed model is 

jJ*=(X*'X*)- |X*'y* 

= (XT-^C^Xr'X'C-^C^y 

= ( X O - 1 X ) - 1 X O " 1 y . 

The estimator >S*is called the generalized least squares (GLS) estima-
tor and its properties are given by the following result. 

THEOREM 1.3: The following are the "generalized" classical as-
sumptions. 

(i) The model is known to be y = Xß0 + e, ß 0 < °°. 
(ii) X is a finite nonstochastic η X k matrix, 
(iii*) Χ Ώ _ 1 Χ is nonsingular for all η ^ k and Ω. 
(iv) £(e) = 0. 
(ν*) € ~~ Ν(Ο,Ω) is finite and nonsingular. 

(a) (Existence) Given (i) - (iii*), /?* exists for all η ^ k and 
is unique. 

(b) (Unbiasedness) Given (i)-(iv), E(ß*) = ß Q . 
(c) (Normality) Given (i)-(v*),)9*~ N(&, (ΧΩ^Χ)" 1). 
(d) (Efficiency) Given (i) - (ν*), β* is the maximum likeli-

hood estimator and is the best unbiased estimator. 

Proof: Apply Theorem 1.1 to the model y* = X*ßQ + €*. 

If Ω is known, we obtain efficiency by transforming the model 
"back" to a form in which OLS gives the efficient estimator. How-
ever, if Ω is unknown, this transformation is not immediately avail-
able. It might be possible to estimate Ω, say by Ω, but Ω is then 
random and so is the factorization C. Theorem 1.1 no longer ap-
plies. Nevertheless, we shall see in Chapter VII that in large samples 
we can often proceed by replacing Ω with a suitable estimator Ω. 

Hypothesis testing in the classical linear model relies heavily on 
being able to make use of the and ̂ -distributions. However, it is 
quite possible that the normality assumption of assumption (v) or (v*) 
may fail. When this happens, the classical t- and F-statistics generally 
no longer have the t- and F-distributions. Nevertheless, the central 
limit theorem can be applied when η is large to guarantee that βη or β* 
is distributed approximately as normal, as we shall see in Chapters IV 
and V. 
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Now consider what happens when assumption (ii) fails, so that the 
explanatory variables X are stochastic. In some cases, this causes no 
real problems because we can examine the properties of our estimators 
"conditional" on X. For example, consider the unbiasedness prop-
erty. To demonstrate unbiasedness we use (i) to write 

If X is random, we can no longer write E((X'X)~lX'e) = 
(X' X)~lX'E(e) However, by taking conditional expectations, we can 
treat X as "fixed," so we have 

E(ßn\X)=ß0 + E((X'X)->X'e\X). 

= )J0 + (X'X)- 1X^(€|X). 

If we are willing to assume E(e\X) = 0, then conditional unbiasedness 
follows, i.e., 

E(ß„\X) = ß 0 . 

Unconditional unbiasedness also holds as a consequence of the law of 
iterated expectations (given in Chapter III), i.e., 

E(ßn) = E[E(ßn\X)] = E(ß0)=ß0. 

The other properties can be similarly considered. However, the 
assumption that £"(€|X) = 0 is crucial. If £"(€|Χ) Φ 0, βη need not be 
unbiased, either conditionally or unconditionally. 

Situations in which E(e\X) Φ 0 can arise easily in economics. For 
example, X, may contain errors of measurement. Suppose the model 
is 

y, = w,Ä, + v„ £(w;v,) = o, 

but we measure W, subject to errors r\t as X, = W, + ηί9 E{Wrft) = 0, 
£ ( ί ; ^ ) ^ 0 , £ ( ^ / ν ί ) = 0. Then 

y, = Xj8 0 + v , - ; / j ? 0 = X,Â> + €,. 

With c, = ν, - η,β0, we have E(X[et) = E[(Wg + tfXv, - η,β0)] = 
E(n'tnt)ßo * 0. Now E(e\X) = 0 implies that for all U E(X't€t) = 0, 
since £(X,'€,) = E[E(X'tet\X)] = E[Xf

tE(et\X)] = 0 . Hence 
E{X'tet) Φ 0 implies E(e\X) Φ 0 . The OLS estimator will not be 
unbiased in the presence of measurement errors. 

As another example, consider the model 
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y, = γ,-,βο + W,<J0 + €„ E(Wtet) = 0; 

€ , = A A - I + v„ £(€,_,v,) = 0 . 
This is the case of serially correlated errors in the presence of a lagged 
dependent variable y,_,. Let X, = (y,_ l 5 W,) and ß'Q = (aQ, δ'0). 
Again, the model is 

y, = Xj? 0 + €„ 

but we have E(X'tet) = £((y,_,, W,)'€,) = (£(y /_ 1€ /),0) /. If we also 
assume E(yt-{vt) = 0 , ^(y,-^,-!) = E(ytet), and £(€?) = it can be 
shown that 

E(y^l€t) = a2

0pJ(l -p0a0). 

Thus E(X't€t) Φ 0 so that E(e\X) Φ 0 and OLS is not generally unbi-
ased. 

As a final example, consider a system of simultaneous equations 

y η = y ,2«o + w, a + €„, E(wtl€tl) = o, 

y,2 = w, 2y 0 + €, 2, £(w; 2€, 2) = o. 

Suppose we are only interested in the first equation, but we know 
E(€tlet2) = σ12 Φ 0 . Let Xn = (y,2, W„) and ß'Q = (α 0 , δ'0). The 
equation of interest is now 

In this case ^(Χ,',6,,) = E((yi2, W,,)'^,) = (£(y,2€„),0)'. Now 
E(yt2€ti) = Ε((\νί2γ0 + ei2)en) = E(etlet2) = σ 1 2 * 0 , assuming 
£(W, 2€„) = 0. Thus Ε(Χ'η€η) = (<τ12,0)' ^ 0, so again OLS is not 
generally unbiased, either conditionally or unconditionally. 

Not only is the OLS estimator generally biased in these circum-
stances, but it can be shown that this bias does not get smaller as η gets 
larger. Fortunately, there is an alternative to least squares that is 
better behaved, at least in large samples. This alternative exploits the 
fact that even when E(X'tet) Φ 0, it is often possible to use economic 
theory to find other variables that are uncorrelated with the errors 
Without such variables, correlations between the observables and 
unobservables (the errors €,) persistently contaminate our estimators, 
making it impossible to learn anything about β0. Hence, these vari-
ables are instrumental in allowing us to estimate ßQ, and we shall 
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denote these "instrumental variables" as a 1 X / vector Z,. The η X / 
matrix Ζ has rows Z,. 

To be useful, the instrumental variables must also be closely enough 
related to X, so that Z'X has full column rank. If we know from 
economic theory that E(X'tet) = 0, then X, can serve directly as the set 
of instrumental variables. As we saw previously, X, may be correlated 
with €,, so we cannot always choose Ζ, = X,. Nevertheless, in each of 
those examples, the structure of the model suggests some reasonable 
choices for Z. In the case of errors of measurement, a useful set of 
instrumental variables would be another set of measurements on W, 
subject to errors ξί uncorrected with r\t and ν,, say Z, = W, + ξί. Then 
E(Z'tet) = E[( W; + £)(v, - ntß0)\ = 0. In the case of serial correla-
tion in the presence of lagged dependent variables, a useful choice is 
Z, = (WjjWf-i), provided ^(W,'.,*,) = 0 , which is not unreasonable. 
Note that the relation y,_j = y,_ 2a G + w * - i ^ o + *t-i ensures that W,_! 
will be related to y,_,. In the case of simultaneous equations, a useful 
choice is Z, = ( W„ ,W,2). The relation y,2 = W, 2y 0 + et2 ensures that 
W / 2 will be related to y, 2. 

In what follows, we shall simply assume that such instrumental 
variables are available. However, in Chapter IV we shall be able to 
specify precisely how best to choose the instrumental variables. 

Earlier, we stated the important fact that almost all econometric 
estimators can be viewed as solutions to an optimization problem. In 
the present context, the zero correlation property E{Z'tet) = 0 pro-
vides the fundamental basis for estimatingßQ. Because €, = y, — XtßQ, 
ßQ is a solution of the equations E(Z't(yt — Xtß)) = 0. However, we 
usually do not know the expectations E{Z[yt) and .ΕΧΖ,'Χ,) needed to 
find a solution to these equations, so we replace expectations with 
sample averages, which we hope will provide a close enough approxi-
mation. Thus, consider finding a solution to the equations 

η-* £ Z,'(y, - Xtß) = Z'(y - Xß)/n = 0. 

This is a system of / equations in k unknowns. If / < / c , there is a 
multiplicity of solutions; if / = / c , the unique solution is ßn = 
(Z'X) _ 1Z'y, provided that Z'X is nonsingular; and if / > / : , these 
equations need have no solution, although there may be a value for β 
that makes Z'(y — Χβ) "closest" to zero. 

This provides the basis for solving an optimization problem. Be-
cause economic theory typically leads to situations in which / > k, we 
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can estimate ßQ by finding that value of β which minimizes the 
quadratic distance from zero of Z'(y — Χβ\ 

dH(fi) = (y-Xfi)'ZPHZ'(y-Xfi), 

where Pn is a symmetric IX I positive definite norming matrix which 
may be stochastic. For now, P„ can be any symmetric positive 
definite matrix. In Chapter IV we shall see how the choice of P„ affects 
the properties of our estimator and how P„ can best be chosen. 

We choose the quadratic distance measure because this minimiza-
tion problem (minimize dn(ß) with respect to β) has a convenient 
linear solution and yields many well-known econometric estimators. 
Other distance measures yield other families of estimators which we 
will not consider here. 

The first-order conditions for a minimum are 

dn{ß)/ß = -2X'ZP„Z'(y - Xß) = 0. 

Provided that Χ' ΖΡ ΛΖ' X is nonsingular (for which it is necessary that 
Z'X have full column rank), the resulting solution is the instrumental 
variables (IV) estimator (also known as the "method of moments" 
estimator) 

Ä, = (X'ZP n Z'XrX'ZP wZY 

All of the estimators considered in this book have this form, and by 
choosing Ζ or P„ appropriately, we can obtain a large number of the 
estimators of interest to econometricians. For example, with Ζ = X 
and P„ = (X 'X/AZ)"

1
, βη=βη, that is, the IV estimator equals the OLS 

estimator. Given any Z, choosing P„ = (Z' Z/ri)~l gives an estimator 
known as two-stage least squares (2SLS). The tools developed in the 
following chapters will allow us to pick Ζ and P„ in ways appropriate to 
most of the situations encountered in economics. 

Now consider the problem of determining whether βη is unbiased. 
If the model is y = Χβ0 + €, we have 

& = (X'ZÎ\Z'XrX'ZP nZ'y 

= (ΧΖΡηΖΧ)ιΧΖΡηΖ\Χβ0 + c) 

= ß ö + ( X Z P W Z x r ^ z p ^ z c , 

so that 

E(ßn)=ßQ + isKX'ZÎ^Z'Xr'X'ZÎ^Z'É]. 
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In general, it is not possible to guarantee that the second term above 
vanishes, even when E(e\Z) = 0. In fact, the expectation in the 
second term above may not even be defined. For this reason, the 
concept of unbiasedness is not particularly relevant to the study of IV 
estimators. Instead, we shall make use of the weaker concept of 
consistency. Loosely speaking, an estimator is "consistent" for ß0 if it 
gets closer and closer to ßQ as η grows. In Chapters II and III we make 
this concept precise and explore the consistency properties of OLS and 
IV estimators. For the examples above in which £"(€|X) Φ 0, it turns 
out that OLS is not consistent, while consistent IV estimators are 
available under general conditions. 

Although we only consider linear models in this book, this still 
covers a wide range of situations. For example, suppose we have 
several equations that describe demand for a group of ρ commodities: 

yr2
 =

 X f 2 & + € , 2 , 

ytp = Xtpßp + etP> t= 1, . . . , n. 

Now let y, be a ρ X 1 vector, y; = (y„, y, 2, . . . , ytp), let e[ = (€„, 
€,2, . . . ,€φ)9\αβ'0 = (β'ΐ9β'2, . . . ,)?;), and let 

0 x, 2 

0 0 

0 
0 

Now X, is a ρ X k matrix, where k = kt and Xti is a 1 X / c , vector. 
The system of equations can be written as 

• · 0 
• · 0 

0 

y»2 0 X i 2 

ytp 0 0 

« 1 2 

• 
+ 

• 

-1 >-



I. The Linear Model and Instrumental Variables Estimators 11 

or 

y, = X,/?0 + €,. 

Letting y' = ( y i , y 2 , . . . , y'n\ X' = (XJ, X 2 , . . . , XJ), and c ' « 
(€ί, € 2 , . . . , e'n), we can write this system as 

y = XÂ> + €. 

Now y is pn X 1, e pn X 1, and XpnXk. This allows us to consider 
simultaneous systems of equations in the present framework. 

Alternatively, suppose that we have observations on an individual t 
in each of ρ time periods, 

y * i = X/iÂ> + €/ i » 

y/2
 = X

f 2 Â > +
 €

/ 2 > 

y* = x*Â>+ / = ι, . . . , w. 

Define y, and €, as above, and let 

X/2 

be a ρ X k matrix. The observations can now be written as 

y, = X,Ä, + €„ 

or equivalently as 

y = XÂ> + *, 

with y, X, and € as defined above. This allows us to consider panel 
data in the present framework. Further, by adopting appropriate 
definitions, the case of simultaneous systems of equations for panel 
data can also be considered. 

Recall that the GLS estimator was obtained from a linear transfor-
mation of a linear model, i.e., 

y* = X*/?0 + €*, 

where y* = C - 1y , X* = C _ 1X, and €* = C _ 1€ for some nonsingular 
matrix C. It follows that any such linear transformation can be 
considered within the present framework. 
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The reason for restricting our attention to linear models and IV 
estimators is to provide clear motivation for the concepts and tech-
niques introduced while also maintaining a relatively simple focus for 
the discussion. Nevertheless, the tools presented have a much wider 
applicability and are directly relevant to many other models and 
estimation techniques. 
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C H A P T E R I I 

Consistency 

In this chapter we introduce the concepts needed to determine the 
behavior of /?„ as « — ». 

I I . 1 Limits 

The most fundamental concept is that of a limit. 

DEFINITION 2.1: Let {bn} be a sequence of real numbers. If there 
exists a real number b and if for every real δ > 0 there exists an integer 
Ν(δ) such that for all η > Ν{δ\ \bn ~b\<ö, then b is the limit of the 
sequence {bn}. 

In this definition the constant δ can take on any real value, but it is 
the very small values of δ that provide the definition with its impact. 
By choosing δ very small, we ensure that bn gets arbitrarily close to its 
limit b for all η sufficiently large. When a limit exists we say that the 
sequence {bn} converges to b as η tends to infinity, written bn — b as 
η —• °°. When no ambiguity is possible, we simply write bn — b. 

EXAMPLE 2.2: (i) Let bn = 1 — \/n. Then bn —> 1. (ii) Let bn = 
(l+a/n)n. Thenbn^ea. (iii) Let bn = n2. Then6„ — «>. (iv)Let 
bn = (— 1)". Then no limit exists. 

The concept of a limit extends directly to sequences of real vectors. 
Let bn be a k X 1 vector with real elements bni, i = 1, . . . , k. If 

13 
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bm; —• bh i = 1, . . . , k, then bn —> b, where b has elements bi9 i = 
1, . . . , k. An analogous extension applies to matrices. 

Often we wish to consider the limit of a continuous function of a 
sequence. For this, either of the following equivalent definitions of 
continuity suffices. 

DEFINITION 2 . 3 : Given g: R* — M! (k9 I < ») and b Ε R*, (i) the 
function g is continuous at b if and only if for any sequence {bn} such 
that bn —* b,g{bn)-+ g(b)\ or equivalently (ii) the function g is contin-
uous at b if and only if for every e > 0 there exists δ(β) > 0 such that if 
a Ε Uk and \at - bt\ < δ(έ), i = 1, . . . , Κ then \gj(a) - gj(b)\ < €, 
7 = 1 , . . . , / . Further, if Β C R*, then # is continuous on Β if it is 
continuous at every point of B. 

EXAMPLE 2 .4 : (i) From this it follows that if an —• a and bn —> b, 
then an + bn —• a + b and anbn —• ße. (ii) The matrix inverse function 
is continuous at every point that represents a nonsingular matrix, so 
that if X'X/n —• M , a finite nonsingular matrix, then (X'X/AZ) - 1 —• 
M "

1
. 

Often it is useful to have a measure of the order of magnitude of a 
particular sequence without particularly worrying about its conver-
gence. The following definition compares the behavior of a sequence 
{bn} with the behavior of a power of n, say ηλ, where λ is chosen so that 
{bn} and {ηλ} behave similarly. 

DEFINITION 2 . 5 : (i) The sequence {bn} is at most of order ηλ, 
denoted 0(nA), if and only if for some real number Δ, 0 < Δ < », there 
exists a finite integer Ν such that for all n^ N, \n~xbn\ < Δ. (ii) The 
sequence {bn} is of order smaller than ηλ, denoted ο(ηλ), if and only if 
for every real number δ > 0 there exists a finite integer Ν(δ ) such that 
for 2λ\η>Ν{δ\\η~%\<δ. 

In this definition we adopt a convention that we utilize repeatedly in 
the material to follow; specifically, we let Δ represent a real positive 
constant that we may take to be as large as necessary, and we let δ (and 
similarly e) represent a real positive constant that we may take to be as 
small as necessary. In any two different places Δ (or δ) need not 
represent the same value, although there is no loss of generality in 
supposing that it does. (Why?) 

As we have defined these notions, {bn} is 0(AZa) if {n~xbn} is eventu-
ally bounded, whereas {bn} is ο(ηλ) if n~xbn —• 0 . Obviously, if {bn) is 
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ο(ηλ), then {bn} is 0(ηλ). Further, if {bn} is 0(ηλ), then for every δ > 0, 
{bn} is ο(ηλ+δ). When is O(n0), it is simply (eventually) bounded 
and may or may not have a limit. We often write 0 ( 1 ) in place of 
O(n0). Similarly, {bn} being o( 1 ) means bn —* 0. 

EXAMPLE 2.6: (i) Let bn = 4 + In + 6n2. Then {bn) is 0(n2) and 
ο(η2+δ) for every <5 > 0 . (ii) Let bn = ( - 1)". Then {bn} is O(l) and 
o^*5) for every δ > 0. (iii) Let = exp(-«) . Then {bn} is o(« _ < J) 
for every δ > 0 and also 0(/? - < 5). 

If each element of a vector or matrix is 0(ηλ) or o(« A), then that vector 
or matrix is 0(ηλ) or ο(ηλ). 

Some elementary facts about the orders of magnitude of sums and 
products of sequence are given by the next result. 

PROPOSITION 2.7: Let an and bn be scalars. (i) If {an} is 0(ηλ) and 
{bn} is 0(ημ\ then {anbn} is 0 (« λ + μ) and + 6„} is 0(nK), where κ = 
max[A, μ], (ii) If {#„} is ο(ηλ) and is ο(ημ), then is o(/iA + / l) 
and {an + £„} is o(nK). (iii) I f i s 0(ηλ) and is Ο(ΛΌ, then {anbn} 
is Ο (Λ

Α +
Ό and {an + bn) is 0(Λ*). 

Proof: (i) Since {a,,} is 0(ηλ) and {6n} is 0(Λ"), there exist a Δ, 0 < 
Δ < co5 and an Ν such that, for all n^ Ν, \η~λαη\ < A and \n~ßbn\ < Δ. 
Consider {anbn}. Now Ι , τ ^ ΰ Α Ι = \n~xann^bn\ = \η~λαη\\η-μ^\ < 
Δ 2 for all η > Ν. Hence {απΑΛ} is 0(ηλ+μ). Consider [an + bn). 
Now \n~K(an + bn)\ = \n~Kan + / r ^ J < \n~Kan\ + |ΑΤ*Ζ>„| by the tri-
angle inequality. Since κ > λ and /c ̂  μ, |Λ2-ΛΓ(α„ + £„)l ̂  + 
\n~Kbn\ < l/r'flj + Ι Λ ^ Ι < 2Δ for all η > Ν. Hence {Ö„ + bn) 
is 0(ΑΖ*), Κ: = max[A, μ], (ii) The proof is identical to that of (i), replac-
ing Δ with every δ > 0 and TV with Ν(δ). (iii) Since {an} is 0(ηλ\ 
there exist a Δ, 0 < Δ < », and an TV such that for all η ^ N, 
\η~λαη\ < Δ. Since is ο(ημ), for every J > 0 there exists Ν(δ) such 
that, for all n> Ν(δ)9 \η~%\<δ. Let Ν'(δ) = max[7V, #(£)] . 
Consider ( t f A ) - Now | « - ^ u B f t J = \n~xann^bn\ = \n-xan\\n^bn\ < 
Αδ for all η ^ W(J)« Hence, for every δ' = Αδ there exists Ή"(δ) = 
ΛΓ(<Ϊ7Δ) = TV'((5) such that \n~^anbn\ < δ\ for all η > 7V"(<Î'). 
Hence { ^ A } is ο(ηλ+μ). Since is ο(ημ\ it is also 0(«"). That 
{an + bn) is 0(nK) follows from (i). 

A particularly important special case is illustrated by the following 
exercise. 
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EXERCISE 2 . 8 : Let An be a k X k matrix and let bn be a k X 1 
vector. If {An} is o( 1 ) and {bn} is 0 ( 1 ), verify that {Anbn} is o( 1 ). 

For the most part, econometrics is concerned not simply with 
sequences of real numbers, but rather with sequences of real-valued 
random scalars or vectors. In almost every case these are either 
averages, for example, Z„ ~ Σ"β1 Zt/n, or functions of averages, such 
as Z2

n, where (Z,} is, for example, a sequence of random scalars. Since 
the Z/s are random variables, we have to allow for a possibility which 
would not otherwise occur, that is, that different realizations of the 
sequence {Z,} can lead to different limits for Z„. Convergence to a 
particular value must now be considered as a random event and our 
interest centers on cases in which nonconvergence occurs only rarely 
in some appropriately defined sense. 

I I . 2 Almost Sure Convergence 

The stochastic convergence concept most closely related to the limit 
notions previously discussed is that of almost sure convergence. 
Sequences that converge almost surely can be manipulated in almost 
exactly the same ways as nonrandom sequences. 

Let ω represent the entire random sequence {Z,}. Interest typically 
centers on averages such as 

bn(œ) = n - ^ Z t . 
/•=1 

DEFINITION 2 . 9 : Let [bn(œ)} be a sequence of real-valued random 
variables. We say that bn(œ) converges almost surely to b, written 
bn(co) -L1-^ b if and only if there exists a real number b such that 
P[œ:bn(œ)^b] = 1. 

The probability measure Ρ describes the distribution of ω and 
determines the joint distribution function of the entire sequence {Z,}. 
A sequence bn(a>) converges almost surely if the probability of obtain-
ing a realization of the sequence {Z,} for which convergence to b 
occurs is unity. Equivalently, the probability of observing a realiza-
tion of {Z,} for which convergence to b does not occur is zero. Failure 
to converge is possible but will almost never happen under this 
definition. Obviously, then, nonstochastic convergence implies al-
most sure convergence. 
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Since a realization of ω can be regarded as a point in an infinite-di-
mensional space, bn(co) is sometimes said to converge almost every-
where (a.e.) in that space. Other common terminology is that bn(co) 
converges to b with probability 1, (w.p.l) or that bn(a>) is strongly 
consistent for b. When no ambiguity is possible, we drop ω and 
simply write bn b. 

EXAMPLE 2.10: Let Zn = n~x Σ?_ι Zt, where {Zt) is a sequence of 
independent identically_ distributed (i.i.d.) random variables with 
E(Zt) = μ < ». Then Zn μ, by the Komolgorov strong law of 
large numbers (Theorem 3.1). 

The almost sure convergence of the sample mean illustrated by this 
example occurs under a wide variety of conditions on the sequence 
{Zt}. A discussion of these conditions is the subject of the next 
chapter. 

As with nonstochastic limits, the almost sure convergence concept 
extends immediately to vectors and matrices of finite dimension. 
Almost sure convergence element by element suffices for almost sure 
convergence of vectors and matrices. 

The behavior of continuous functions of almost surely convergent 
sequences is analogous to the nonstochastic case. 

PROPOSITION 2.11: Given g : Uk —• Ul (k, I < ») and any sequence 
{bn} such that bn b, where bn and b are k X 1 vectors, if g is 
continuous at b, then g(bn) g(b). 

Proof: Since bn(co) — b implies g(bn(co)) —• g(b), [ω: bn(œ) —+b]C 
[ω: g(bn(œ)) - g(b)]. Hence 1 = Ρ[ω: bn(w) ^b]< P[co: 
g(bn(œ)) - g{b)] =s 1, so that g(bn) — g(b). 

This result is one of the most important in this book, since consistency 
results for many of our estimators follow by simply applying Proposi-
tion 2.11. 

THEOREM 2.12: Suppose 

(i) y = Xß0 + e; 
(ii) X'€//i ~ 0; 
(iii) X'X/tf-^ 1- M, finite and positive definite. 

Then ßn exists a.s. for all η sufficiently large, and βη β0. 

Proof: Since X'X/« M, it follows from Proposition 2.11 that 
det(X'X/fl) det M. Because M is positive definite by (iii), det 
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M > 0. It follows that det(X' Χ / Λ ) > 0 a.s. for all η sufficiently large, 
so ( X ' X / f l ) - 1 exists a.s. for all η sufficiently large. Hence β„ = ( X ' X / 
n)~l X'y/n exists a.s. for all η sufficiently large. 

N o w β η = β 0 + (Χ'Χ/η)-χ X'e/n by (i). It follows from Proposition 
2.11 that ßn ßQ + Μ - 1 ·0 = ßQ, given (ii) and (iii). 

Theorem 2.12 is a fundamental consistency result for least squares 
estimation in many commonly encountered situations. Whether this 
result applies in a given situation depends on the nature of the data. 
For example, if our observations are randomly drawn from a popula-
tion, as in a pure cross section, they may be taken to be i.i.d. The 
conditions of Theorem 2.12 hold for i.i.d. observations provided 
E(X'tXt) = M, finite and positive definite, and E(X't€t) = 0, since 
Komolgorov's strong law of large numbers (Example 2.10) en-
sures that X 'X / r t = « -

1
E ; L 1 X ; X ,

J L J L
- M and X'e/n = n~

l 

Xfa 0. If the observations are dependent (as in a time series), 
different laws of large numbers must be applied to guarantee that the 
appropriate conditions hold. These are given in the next chapter. 

A result for the IV estimator can be proven analogously. 

EXERCISE 2.13: Prove the following result. Suppose 

(i) y = X Ä , + €; 

(ii) Z'e/n 0;a 

(iii) (a) Z'X/AZ Q, finite with full column rank; 
(b) P„ P, finite and positive definite. 

Then j$n exists a.s. for all η sufficiently large, and ßn ßQ. 

This consistency result for the IV estimator precisely specifies the 
conditions that must be satisfied for a sequence of random vectors {Z ,} 
to act as a set of instrumental variables. They must be unrelated to the 
errors, as specified by assumption (ii), and they must be closely enough 
related to the explanatory variables so that Z'X/n converges to a 
matrix with full column rank, as required by assumption (iiia). Note 
that a necessary condition for this is that the order condition for 
identification holds (see Fisher [1966, ch. 2]), that is, that l^k. 
(Recall that Ζ is pn XI and X is pn X k.) For now, we simply treat the 
instrumental variables as given. In Chapter IV we see how the 
instrumental variables may be chosen optimally. 

A potentially restrictive aspect of the consistency results just given 
for the least squares and IV estimators is that the matrices X ' X / « , 
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Z'X/n, and P„ are each required to converge to a fixed limiting value. 
When the observations are not identically distributed (as in a stratified 
cross section, a panel, or certain time-series cases), these matrices need 
not converge, and the results of Theorem 2.12 and Exercise 2.13 do 
not necessarily apply. 

Nevertheless, it is possible to obtain more general versions of these 
results that do not require the convergence of X' X/n, Z' X/n, or Pn by 
generalizing Proposition 2.11. To do this we make use of the notion 
of uniform continuity. 

DEFINITION 2.14: Given g: Uk—+ R7 (k, I< <»), we say that g is 
uniformly continuous on a set Β C Uk if and only if for each e > 0 there 
is a δ(β) > 0 such that if a and b belong to Β and < δ(έ), i = 
1, . . . 9k,ihm\gj(a)-gj(b)\<eJ=l, . . . , / . 

Note that uniform continuity implies continuity on Β but that 
continuity on Β does not imply uniform continuity. The essential 
aspect of uniform continuity that distinguishes it from continuity is 
that δ depends only on e and not on b. However, when Β is compact, 
continuity does imply uniform continuity, as formally stated in the 
next result. 

THEOREM 2.15 (Uniform continuity theorem): Suppose g: Uk —> 
IR' is a continuous function on C C Uk. If C is compact, then g is 
uniformly continuous on C. 

Proof: See Bartle [1976, p. 160]. 

Now we extend Proposition 2.11 to cover situations where bn(œ) — 
cn 0, but the sequence of real numbers {cn} does not necessarily 
converge. 

PROPOSITION 2.16: Let g : R* —• R7 be continuous on a compact set 
C C R*. Suppose that bn(co) and cn are k X 1 vectors such that bn(œ) — 
cn 0 and there exists η > 0 such that for all n sufficiently large 
[c: \c — cn\< η] C C, i.e., for all n sufficiently large cn is interior to C 
uniformly in n. Then g(bn(co)) — g(cn) 0. 

Proof: Let gj be the y'th element of g. Since C is compact, gj is 
uniformly continuous on C by Theorem 2.15. Choose ω such that 
bn(a>) — cn —• 0 as n —* °°. Since cn is interior to C for all n sufficiently 
large uniformly in n and bn(œ) — cn —• 0, bn(co) is also interior to C for 
all n sufficiently large. By uniform continuity, for any e > 0 there 
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exists δ(β) > 0 such that if \bni(co) — cni\ < ô(e\ i = 1, . . . , k, then 
\gj(bn(œ)) — gj(cn)\ < e. Since\bn i(ω) — cni\ < δ(έ) for all η sufficiently 
large and almost every ω, then \gj(bn(œ)) — gj(c„)\ < e for all η suffi-
ciently large and almost every ω. Hence g(bn(co)) — g(cn) 0. 

To state the results for the OLS and IV estimators below concisely, 
we define the following concepts, as given by White [1982, pp 
484-485]. 

DEFINITION 2.17: A sequence of k X k matrices {A„} is said to be 
uniformly nonsingular if and only if for some δ > 0 and all η suffi-
ciently large |det A„| > δ. If {A„} is a sequence of positive semidefinite 
matrices, then {A„} is uniformly positive definite if and only if {A„} is 
uniformly nonsingular. If {An} is a sequence of / X k matrices, then 
{A„} has uniformly full column rank if and only if there exists a 
sequence of k X k submatrices {A*} which is uniformly nonsingular. 

If a sequence of matrices is uniformly nonsingular, the elements of 
the sequence are prevented from getting "too close" to singularity. 
Similarity, if a sequence of matrices has uniformly full column rank, 
the elements of the sequence are prevented from getting "too close" to 
a matrix with less than full column rank. 

Next we state the desired extensions of Theorem 2.12 and Exercise 
2.13. 

THEOREM 2.18: Suppose 

(i) y = Xß0 + e; 
(ii) X'€/n 0; 
(iii) Χ' Χ/η — M„ 0, where {M„} is 0 ( 1 ) and uniformly posi-

tive definite. 

Then βη exists a.s. for all η sufficient by large and βη β0. 

Proof: Because M„ is 0 ( 1 ) for all η sufficiently large, it follows from 
Proposition 2.16 that det(XrX/A2) - det M „ - ^ 0. Since det M„ > 
δ> 0 for all η sufficiently large by Definition 2.17, it follows that 
det(X'X/«) > δ/2>0 for all η sufficiently large almost surely, so that 
(X'X/n)~l exists a.s. for all η sufficiently large. Hence ßn = (X'X/ 
n)~lX'y/n exists a.s. for all η sufficiently large. 

Now βη=β0 + (Χ' X/n)~lX'€/n by (i). It follows from Proposition 
2.16 that ßn — (ßQ + M^1 · 0) J L ±- 0 or ßn

 J L ^ β0, given (ii) and (iii). 
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Compared with Theorem 2 . 1 2 , the present result relaxes the re-
quirement that X'X/n M and instead requires that X'X/'n — 
M„ 0, allowing for the possibility that X'X/n may not converge 
to a fixed limit. Note that the requirement det M„ > δ > 0 ensures the 
uniform continuity of the matrix inverse function. 

The proof of the IV result requires a demonstration that {Q^P„Q„} 
is uniformly positive definite under appropriate conditions. These 
conditions are provided by the following result. 

LEMMA 2 . 1 9 : If {A„} is a O(l) sequence of IX k matrices with 
uniformly full column rank and {B„} is a O(l) sequence of uniformly 
positive definite / X / matrices, then {Α^Β„Α„} and {A^B^AJ are 
O(l) sequences of uniformly positive definite kXk matrices. 

Proof: See White [ 1 9 8 2 , Lemma A . 3 ] . 

EXERCISE 2 . 2 0 : Prove the following result. Suppose 

(i) y = XÄ, + €; 
(ii) Z'e/n 0; 
(iii) (a) Z'X/n - Qn 0, where {Q„} is O(l) and has uni-

formly full column rank; 
(b) Pn — P„ 0 , where {P„} is O(l) and uniformly posi-

tive definite 

Then ßn exists a.s. for all η sufficiently large, and ßn ßQ. 

The notion of orders of magnitude extends to almost surely conver-
gent sequences in a straightforward way. 

DEFINITION 2 . 2 1 : (i) The sequence {bn(co)} is at most of order ηλ 

almost surely, denoted O a s(« A) , if there exists a O(l) nonstochastic 
sequence {an} such that η~\(ω) — a„ 0 . (ii) The sequence 
{bn(œ)} is of order smaller than ηλ almost surely, denoted o a s(« A) , if 
η~%(ω) 0 . 

Proposition 2 .7 remains valid when 0(ηλ) and ο(ηλ) are replaced by 
Oa.sX

w A
)

 a n (* o a s.(«A), as the following result shows. 

EXERCISE 2 . 2 2 : Prove the following. Let an and bn be random 
scalars. (i) If {an} is O a s(« A) and {bn} is O a s(«^), then {anbn} is 
Oa.s.(«

A 4 / l
) and \an + bn} is Oas(n

K), κ = max[A, μ], (ii) If {an} is 
oAS.(A2A) and {bn} is οΆΒ(η

μ), then {anbn} is oa.s.(«A 4*) and [an + bn) is 
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oaJnK). (iii) If {an} is Oas{nx) and {bn} is oa s.(«O, then is 
ο^(ηλ+μ) and + bn) i s O ^ * ) . (J/z/tf: Since {an} isO a s.(«A), there 
exists a O(l) nonstochastic sequence {c„} such that η~λαη(ω) — 
< ; Λ - ^ 0, and cn lies interior to a compact set C = [—Δ, Δ] for all η 
sufficiently large uniformly in n. Apply Proposition 2.16.) 

II.3 Convergence in Probability 

A weaker stochastic convergence concept is that of convergence in 
probability, which is now defined. 

DEFINITION 2.23: Let {bn(œ)} be a sequence of real-valued random 
variables. If there exists a real number b such that for every e > 0, 
Ρ[ω: \bn(œ) — b\ < e] —> 1 as η —> then bn(œ) converges in proba-
bility to b, written bn(co) b. 

With almost sure convergence the probability measure Ρ takes into 
account the joint distribution of the entire sequence {Z,}, but with 
convergence in probability, we only need concern ourselves sequen-
tially with the joint distribution of the elements of {Z,} that actually 
appear in bn(œ), typically the first n. When a sequence converges in 
probability, it becomes less and less likely that an element of the 
sequence lies beyond any specified distance e from b as η increases. 
The constant b is called the probability limit ofbn. 

Convergence in probability is also referred to as weak consistency, 
and since this has been the most familiar stochastic convergence 
concept in econometrics, the word "weak" is often simply dropped. 

The relationship between convergence in probability and almost 
sure convergence is specified by the following result. 

THEOREM 2.24: Let {bn} be a sequence of random variables. If 
bn b, then bn b. If bn b, then there exists a subsequence 
{bnj} such that b„ b. 

Proof: See Lukacs [1975, p. 48]. 

Thus almost sure convergence implies convergence in probability, 
but the converse does not hold. Nevertheless, a sequence that con-
verges in probability always contains a sw&sequence that converges 
almost surely. Essentially, convergence in probability allows more 
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erratic behavior in the converging sequence than almost sure conver-
gence, and by simply disregarding the erratic elements of the sequence 
we can obtain an almost surely convergent subsequence. For an 
example of a sequence that converges in probability but not almost 
surely, see Lukacs [ 1 9 7 5 , pp. 3 4 - 3 5 ] . 

EXAMPLE 2 . 2 5 : Let Zn = n~x
 Σ ^ , Ζ,, where {Ζ,} is a sequence of 

random variables such that E(Zt)_= μ, var Ζ, = σ2 < °° for all t and 
cov (Ζ,, Ζ τ ) = 0 for t Φ τ. Then Zn —• μ by the Chebyshev weak law 
of large numbers (Rao [ 1 9 7 3 , p. 112]) . 

Note that, in contrast to Example 2 . 1 0 , the random variables here 
are not assumed either to be independent (simply uncorrelated) or 
identically distributed (except for having identical mean and var-
iance). However, second moments are restricted by the present result, 
whereas they are completely unrestricted in Example 2 . 1 0 . 

Note also that, under the conditions of Example 2 . 1 0 , convergence 
in probability follows immediately from the almost sure convergence. 

In general, most weak consistency results have strong consistency 
analogs that hold under identical or closely related conditions. For 
example, strong consistency also obtains under the conditions of 
Example 2 . 2 5 . These analogs typically require somewhat more so-
phisticated techniques for their proof. 

Vectors and matrices are said to converge in probability provided 
each element converges in probability. 

To show that continuous functions of weakly consistent sequences 
converge to the functions evaluated at the probability limit, we use the 
following result. 

PROPOSITION 2 . 2 6 (The implication rule): Consider events Ε and 
Fi9i=l, . . . , k, such that EDH^F^ Then P[E

C
] < IJL, 

Proof: See Lukacs [ 1 9 7 5 , p. 7 ] . 

PROPOSITION 2 . 2 7 : Given ^ : IR^ —^ IR
7 and any sequence {bn} such 

that bn —* b, where bn and b are k X 1 vectors, if g is continuous at 
b9 then g(bn)±g(b). 

Proof: Let gj be an element of g. For every e > 0 , the continuity of g 
implies that there exists S(e) > 0 such that if \bni(œ) — bt\ < ô(e\ i = 
1, . . . , / c , then \gj(bn(co)) - gj(b)\ < e. Define the events F f = 
[ω: \bni(œ) - bt\ < 0(e)] and Ε - [ω: \gj(bn(œ)) - gj(b)\ < β]. Then 
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Ε D njL, Fg. By the implication rule, P[EC] < Σ*_, P [ ^ ] . Since 
bn for arbitrary η > 0 , and all AÎ sufficiently large, ^ rç. 
Hence P [ £ C ] < k% or > 1 - kr\. Since < 1 and η is 
arbitrary, P[E] — 1 as /2 —• °°, hence gj(bn(œ)) Since this 
holds for all j= 1, . . . , I, g(b„(co))g(b). 

This result allows us to establish direct analogs of Theorem 2 . 1 2 and 
Exercise 2 . 1 3 . 

THEOREM 2 . 2 8 : Suppose 

(i) y = X/L + €; 
(ii) X'e/n 0; 
(iii) X'X/n M, finite and positive definite. 

Then ßn exists in probability, and ßn~^ ßQ. 

Proof: The proof is identical to that of Theorem 2 . 1 2 except that 
Proposition 2 . 2 7 is used instead of Proposition 2 . 1 1 and convergence 
in probability replaces convergence almost surely. 

The statement that ßn exists in probability can be^ understood to 
imply that there exists a subsequence {ßn.} such that ßn. exists almost 
surely for all «7 sufficiently large, by Theorem 2 . 2 4 . In other words, 
X'X/n can converge to M in such a way that X' X/n does not have an 
inverse for each n, so that ßn may fail to exist for particular values of n. 
However, a subsequence of {X'X/n} converges almost surely, and for 
that subsequence, ßn. will exist for all n} sufficiently large. 

EXERCISE 2 . 2 9 : Prove the following result. Suppose 

(i) y = Xj» +c; 
(ii) Z ' € / > 2 ^ 0 ; 

(iii) (a) TL'X/n Q, finite with full column rank; 
(b) P„ P, finite and positive definite. 

Then ßfi exists in probability, and ßn ß0. 

Whether or not these results apply in particular situations depends 
on the nature of the data. As we mentioned before, for certain kinds 
of data it is restrictive to assume that X'X/n, Z'X/n, and P„ converge 
to constant limits. We can relax this restriction by using an analog of 
Proposition 2 . 1 6 . This result is also used heavily in later chapters. 
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PROPOSITION 2.30: Let g : Uk —> Ul be continuous on a compact set 
C C Rk. Suppose that bn(œ) and cn are k X 1 vectors such that bn(d) — 
cn 0, and for all η sufficiently large, cn is interior to C, uniformly in 
n. Then g(bn(w)) - g{cn) 0. 

Proo/: Let be an element of g. Since C is compact, gj is uniformly 
continuous by Theorem 2.15, so that for every e > 0 there exists 
δ(β) > 0 such that if \bni(œ) - cni\< S(e\ / = 1 , . . . , k, then 
\gj(b„((o)) - gj(c„)\ < e. Define the events Ft = [ω: \bni(œ) - cj < 
ô(€)]andE=[œ:\gj(bn(œ))-gj(cn)\<e]. T h e n ^ D n j L , / ^ By the 
implication rule, P[EC] < Σ^=1 Since Α„(ω) — cn 0, for 
arbitrary // > 0 and all « sufficiently large, Ρ [Ρ·] ^ rç. Hence P[EC] < 
Λ:̂ 7, or P [£ ] > 1 — / c ? / . Since P [ £ ] < 1 and >/ is arbitrary, P [ £ ] — 1 as 
Λ—>°o, hence gj(bn(co))— gj(cn)^0. Since this holds for all j = 
1, . . . 9l,g(bn(co))-g(cn)±0. 

THEOREM 2.31: Suppose 

(i) y = Xß +e9 

(ii) X'€/n ^ 0; 
(iii) Χ' Χ/η — Mn 0, where (M„) is 0 ( 1 ) and uniformly positive 

definite. 

Then βη exists in probability, and ßn^> ßQ. 

Proof: The proof is identical to that of Theorem 2.18 except that 
Proposition 2.30 is used instead of Proposition 2.16 and convergence 
in probability replaces convergence almost surely. 

EXERCISE 2.32: Prove the following result. Suppose 

(i) y = XÄ 0 + c; 
(ii) Z'e/n 0; 
(iii) (a) Z'X/n - Qn 0, where {Q„} is O(l) and has uniformly 

full column rank; 
(b) P„ — P„ 0, where {P„} is O(l) and uniformly positive 

definite. 

Then βη exists in probability, and βη —• β0. 

As with convergence almost surely, the notion of orders of magni-
tude extends directly to convergence in probability. 
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DEFINITION 2 . 3 3 : (i) The sequence {bn(œ)} is at most of order ηλ in 
probability, denoted Ορ(η

λ), if there exists an O(l) nonstochastic 
sequence {an} such that n~kbn(œ) — # „ — 0 . (ii) The sequence {bn(a>)} 
is of order smaller than ηλ in probability, denoted ορ(η

λ), if 
η~%(ω) — 0 . 

When a sequence {bn{œ)} is O p(l), we say it is bounded in probabil-
ity, which is equivalent to the statement that for any arbitrarily small 
δ > 0 there exists Δ < <*> and an integer Ν sufficiently large such that 
P[co:\bn(co)\ > A] < δ, for all n>N. 

EXAMPLE 2 . 3 4 : Let bn(a>) = Zn, where {Zt) is a sequence of identi-
cally distributed N(0, 1) random variables. Then P[œ:\bn(œ)\ > A] = 
P[\Zn\ > A] = 2 Φ ( - Δ ) for all η > 1, where Φ is the standard normal 
cumulative distribution function (c.d.f.). By making Δ sufficiently 
large, we have 2 Φ ( — Δ ) < δ for arbitrary δ > 0 . Hence, b„(co) = Zn is 
O p(l). 

Note that Φ in this example can be replaced by any c.d.f. F and the 
result still holds, i.e., any random variable Ζ with c.d.f. F is Op( 1). 

EXERCISE 2 . 3 5 : Prove the following. Let an and bn be random 
scalars. (i) If {an} is Ορ(η

λ) and {bn} is Ορ(η
μ), then {anbn} is Ορ(η

λ+μ) 
and {an + bn] is Ορ(η

κ), κ = max[A, μ], (ii) If {an} is ορ(η
λ) and {bn} is 

op(n»), then {anbn) is οΡ(Α2Λ+Ό and {an + bn) is op(n
K). (iii) If {an} is 

Ορ(η
λ) and {bn} is op(«^), then is ορ(η

λ+μ) and {ΟΛ + bn) is 
0(A2

K
) . (///«/: Apply Proposition 2 .30 . ) 

One of the most useful results in this chapter is the following 
corollary to this exercise, which is applied frequently in obtaining the 
asymptotic normality results of Chapter IV. 

COROLLARY 2 . 3 6 (Product rule): Let Anbe kXk and let bn be 
kXl. If {An} is op( 1 ) and b„ is Op( 1 ), then (Anbn) is op( 1 ). 

Proof: Let a„ = Anbn and An = [Anij]. Then ani = Anijbnj. 
Since {Anij) is o p(l) and {bnj) is O p(l), {Anijbnj} is o p(l) by Exercise 
2.35(iii). Hence, {ani} is o p(l), since it is the sum of k terms each of 
which is op( 1 ). It follows that {an = Anbn) is op( 1 ). 
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II.4 Convergence in rth Mean 

The convergence notions of limits, almost sure limits, and probabil-
ity limits are those most frequently encountered in econometrics, and 
most of the results in the literature are stated in these terms. Another 
convergence concept often encountered in the context of time series 
data is that of convergence in the rth mean. 

DEFINITION 2 . 3 7 : Let bn{œ) be a sequence of real-valued random 
variables. If there exists a real number b such that 
E(\bn(œ) — b\r) —* 0 as η — °° for some r > 0 , then bn(œ) converges in 
the rth mean to b, written bn(w) b. 

The most commonly encountered occurrence is that in which r = 2 , 
in which case convergence is said to occur in quadratic mean, denoted 
b„(co) b. Alternatively, b is said to be the limit in mean square of 
bn(a>), denoted l.i.m. bn(d) = b. 

A useful property of convergence in the rth mean is that it implies 
convergence in the 5th mean for s < r. To prove this, we use Jensen's 
inequality, which we now state for convenience. 

PROPOSITION 2 . 3 8 (Jensen's inequality): Let g: Rl —• W be a con-
vex function on an interval Β cW and let Ζ be a random variable 
such that P[Z G Β] = 1. Then g(E(Z)) < E(g(Z)). If g is concave 
on B, then g(E(Z))>E(g(Z)). 

Proof: See Rao [ 1 9 7 3 , pp. 5 7 - 5 8 ] . 

EXAMPLE 2 . 3 9 : Let g(z) = |z|. It follows from Jensen's inequality 
that\E(Z)\^E\Z\. Le tg (z )=z 2 . It follows from Jensen's inequality 
that E(Z)2 < E(Z2). 

THEOREM 2 . 4 0 : If bn(œ) b and r > s, then bn(co) b. 

Proof: Let g(z) = zQ, q < 1, ζ > 0 . Then g is concave. Set ζ = 
\bn(œ) — b\r and q = s/r. From Jensen's inequality, 

E(\bn(œ) - b\s) = E({\bn(œ) - b\'Y,r) 

<{E(\bn(co)-bY)Y'. 

Since E(\bn(co) - b\r) — 0, it follows that E(\bn(œ) - b\s) ^ 0, 
bn(œ) b. 

Convergence in the rth mean is a stronger convergence concept 
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Proof: See Lukacs [ 1 9 7 5 , pp. 8 - 9 ] . 

Setting r = 2 gives the familiar Chebyshev inequality. 

THEOREM 2 . 4 2 : If bn(œ) -Ljn- b for some r > 0, then bn(œ) b. 

Proof: Since E(\bn(co) - b\r) — 0as« — ™,E(\bn(œ) - b\r) < »for 
all η sufficiently large. It follows from the generalized Chebyshev 
inequality that, for every e > 0, 

P[œ:\bH(œ) -b\*e]* E(\bn(co) - b\r)/e'. 

Hence P[œ:\bn(œ) - b\ < e] > 1 - E(\bn(co) - b\r)/er— 1 as η — », 
since 6. It follows that bn(œ) —> 

Without further conditions, no necessary relationship holds be-
tween convergence in the rth mean and almost sure convergence. For 
further discussion, see Lukacs [ 1 9 7 5 , ch. 2 ] . 

Since convergence in the rth mean will be used primarily in specify-
ing conditions for later results rather than in stating their conclusions, 
we provide no analogs to the previous consistency results for the least 
squares or IV estimators. 
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than convergence in probability, and in fact implies convergence in 
probability. To show this, we use the generalized Chebyshev inequal-
ity. 

PROPOSITION 2 . 4 1 {Generalized Chebyshev inequality): Let Ζ be a 
random variable such that E\Z\r < », r > 0. Then for every e > 0, 

P[\Z\>e]<E(\Z\r)/er. 
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Laws of Large Numbers 

In this chapter we study laws of large numbers, which provide 
conditions guaranteeing the stochastic convergence (e.g., of Z'X/n 
and Z'e/n, required for the consistency results of the previous 
chapter. Since different conditions will apply to different kinds of 
economic data (e.g., time series or cross section), we shall pay particu-
lar attention to the kinds of data these conditions allow. Only strong 
consistency results will be stated explicitly, since strong consistency 
implies convergence in probability (by Theorem 2.24). 

The laws of large numbers we consider are all of the following form. 

PROPOSITION 3.0: Given restrictions on the dependence, heteroge-
neity, and moments of a sequence of random variables {Z,}, 
Ζ η - fin 0, where Z„ = n~l Σ?=1 Ζ, and fi„ = E(Zn). 

The results that follow specify precisely which restrictions on the 
dependence, heterogeneity (i.e., the extent to which the distributions 
of the Z, may differ across /), and moments are sufficient to allow the 
conclusion Z„ — E(Zn) 0 to hold. As we shall see, there are 
sometimes trade-offs among these restrictions; for example, relaxing 
dependence or heterogeneity restrictions may require strengthening 
moment restrictions. 

III. 1 Independent Identically Distributed 
Observations 

The simplest case is that of independent identically distributed 
(i.i.d.) random variables. 

29 
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THEOREM 3.1 (Komolgorov): Let {Z,} be a sequence of i.i.d. 
random variables. Then Ζ Λ - ^ - μ if and only if £ ] Z , | < » and 
Ε(Ζ,)=μ 

Proof: See Rao [1973, p. 115]. 

An interesting feature of this result is that the condition given is 
sufficient as^well as necessary for ZN μ. Also note that since {Z,} 
is i.i.d., Ε(ΖΗ) = μ. 

To apply this result to econometric estimators we have to know that 
the summands of Z ' Χ / Λ = n~l Σ ? . , Ζ , ' Χ , and Z'e/n = n~l Σ ? = 1 Zfo 
arei.i.d. This occurs when the elements of {(Z,, Xt, €,)'}are i.i.d. To 
prove this, we use the following result. 

PROPOSITION 3.2: Let g: Uk —• Mf be a continuousf function, (i) 
Let Z, and Ζ τ be identically distributed. Then g(ZT) and g(ZT) are 
identically distributed, (ii) Let Z, and Ζ τ be independent. Then 
g(ZT) and g(ZT) are independent. 

Proof: (i) Let VT = g(ZT\ VX = g(ZT). Let A = [z:g(z) < a]. 
Then = P[Vt < a] = Ρ[Ζ, G Λ] = Ρ[Ζ τ G Λ] = Ρ[2/ τ < fl] = 
F T(Ö ) for all 0 Ε IR*. Hence g(ZT) and g(Z T) are identically dis-
tributed, (ii) Let A X = [z:g(z) < Û J , Λ 2 = [z:g(z) < a2\. Then 

A 2) - p\yt < Y T < A 2] = P [ Z , G ^ , Z T G Λ 2 ] = 

P[ZT G Λ,]/>[ΖΤ G Λ 2] =P[Vt < fll]/>[yT < fl2] =Ft{ax)FMi) for all 
a,, α 2 G R*. Hence g(Z,) and g(ZT) are independent. 

PROPOSITION 3.3: If {(Z,, X , , €,)'} is an i.i.d. random sequence, 
then { X ; X , } , {X, '€,}, { Ζ , ' Χ , } , {Zfe}, and {Z;Z,} are i.i.d. sequences. 

Proof: Immediate from Proposition 3.2(i) and (ii). 

To write the moment conditions on the explanatory variables in 
compact form, we make use of the Cauchy-Schwartz inequality, 
which follows as a corollary to the following result. 

PROPOSITION 3.4 (Holder's inequality): If p> I and l/p + 
\/q = 1 and if E\V\P < » and E\Z\< < », then E\VZ\< \E\VW* 
[Ε\Ζ\ψ«. 

Proof: See Lukacs [1975, p. 11]. 

t This result also holds for measurable functions, defined in Definition 3.21. 

file:///E/VW*


III. 1 Independent Identically Distributed Observations 31 
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by the Cauchy-Schwartz inequality. It follows that the elements of 
X'tXt will have E^^ XthiXthj\ < » (as we require to apply Komol-
gorov's law of large numbers), provided simply that £ |X /Aj-|

2 < 0 0 f ° r all 
A and /. 

Combining Theorems 3.1 and 2.12, we have the following OLS 
consistency result for i.i.d. observations. 

THEOREM 3.5: Suppose 

(i) y = XÂ3 + €; 
(ii) {(X,, €,)'} is an i.i.d. sequence; 
(iii) (a) £(X,'€,) = 0; 

(b) E\Xthieth\ < <*>, h = 1, . . . , ρ, i = 1, . . . , k; 
(iv) (a) £ | Χ / Λ /|

2
< ο ο , Α = ΐ , . . . , Α ι = 1 , . . . 

(b) M = .ΕΧΧ,'Χ,) is positive definite. 

Then βη exists a.s. for all η sufficiently large, and ß , - ^ ßQ. 

Proof: Given (ii), {X,'€,} and {Χ,'Χ,} are i.i.d. sequences. The 
elements of X'tet and X't Xt have finite expected absolute values, given 
(iii) and (iv) and applying the Cauchy-Schwartz inequality as above. 
By Theorem 3.1, X'e/n = n~l Σ?=1 Xfo 0, andX'X/« =n~l Σ?=1 

Χ , ' Χ , M , finite and positive definite, so the conditions of 
Theorem 2.12 are satisfied and the result follows. 

This result is useful in situations in which we have observations 
from a random sample, as in a simple cross section. The result does 

If ρ = q = 2, we have the Cauchy-Schwartz inequality, 

E\vz\<E(y2Y'2 E{z2y2. 

The /, jth element of Χ,' X, is given by Σ£ = 1 XlhiXthj9 and it follows from 
the triangle inequality that 
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not apply to stratified cross sections since there the observations are 
not identically distributed across strata and generally will not apply to 
time-series data, since there the observations (X,, €,) generally are not 
independent. For these situations, we need laws of large numbers that 
do not impose the i.i.d. assumption. 

Since (i) is assumed, we could equally well have specified (ii) as 
requiring that {(X,, y,)'} is an i.i.d. sequence and then applied Proposi-
tion 3 .2 , which implies that {(X, ,€,)'} is an i.i.d. sequence. Next, note 
that conditions sufficient to ensure E(X[et) = 0 would be X, indepen-
dent of €, for all / and E(et) = 0; alternatively, it would suffice that 
E(et\Xt) = 0. This latter condition follows if £"(y,|X,) = XtßQ and we 
define et as €, = y, — E(yt\Xt) = yt — XtßQ. Both of these alternatives 
to (iii) are stronger than the simple requirement that E(X'iei) = 0. 
Note that no restrictions are placed on the second moment of et in 
obtaining consistency for ßn. In fact, €, can have infinite variance 
without affecting the consistency of ßn for ßQ. 

The result for the IV estimator is analogous. 

EXERCISE 3 .6 : Prove the following result. Given 

(i) y = Xß0 + e, 
(ii) {(Ζ,, X,, €,)'} an i.i.d. sequence; 
(iii) (a) £ ( Z ; € t) = 0; 

(b) E\Zthieth\ < », h = 1, . . . , /?, i = 1, . . . , /; 
(iv) (a) E\ZthiXthj\ < oo, Λ = 1, . . . , p,i= 1, . . . , /, and 

j= 1, . . . , k\ 
(b) Q = E(Z'tXt) has full column rank; 
(c) P„ P, finite and positive definite. 

Then $ n exists a.s. for all η sufficiently large, and ßn ßQ. 

III.2 Independent Heterogeneously 
Distributed Observations 

For cross-sectional data, it is often appropriate to assume that the 
observations are independent but not identically distributed. The 
failure of the identical distribution assumption results from stratifying 
(grouping) the population in some way. The independence assump-
tion remains valid provided that sampling within and across the strata 
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is random. A law of large numbers useful in these situations is the 
following. 

THEOREM 3.7 (Markov): Let {Z,} be a sequence of independent 
random variables, with finite means μ, = E(Zt). If for some δ > 0, 
ΣΓ-, (E\Zt - μ , | ι + δ) / ί ι +δ < », then Z„ - fin 0. 

Proo/? See Chung [1974, pp. 125-126]. 

In this result the random variables are allowed to be heterogeneous 
(i.e., not identically distributed), but the moments are restricted by the 
condition that Σ Γ = 1 E\Zt -ßt\

l+s/tl+s < », known as Markov's con-
dition. If δ = 1, we have a law of large numbers due to Komolgorov 
(e.g., see Rao [1973, p. 114]). But Markov's condition allows us to 
choose δ arbitrarily small, thus reducing the restrictions imposed on 
Z,. 

By making use of Jensen's inequality and the following useful 
inequality, it is possible to state a corollary with a simpler moment 
condition. 

PROPOSITION 3.8 (The cr inequality): Let 2 / and Ζ be random 
variables with E\V\r < °° and E\Z\r < » for some r > 0. Then 

e\v + z\r < cr(E\y\r + E\z\r\ 

where cr = 1 if r < 1 and cr = 2 r _ 1 if r > 1. 

Proof: See Lukacs [1975, p. 13]. 

COROLLARY 3.9: Let {Z,} be a sequence of independent random 
variables such that E\Zt\

1+0 < A < °° for some δ > 0 and all t. Then 

Proof: By Proposition 3.8, 

E\Zt-M^^2*(E\Ztr* + \ ß t n 

By assuming that E\Zt\
l+s < Δ and using Jensen's inequality, 

\ßt\*E\Zt\*(E\Zgr*)W>. 

It follows that for all 1, 

Ι μ , Γ
+ < 5

< Δ . 
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Hence, for all t,E\Zt — μ,| 1 + <5 < 2 1 + < 5Δ. Verifying the moment condi-
tion of Theorem 3.7, we have 

00 00 

2 E\Zt - ßt\
l+ö/tl+0 < 2ι+ό Δ 2 l/tl+ô < », 

t=\ /=ι 
since Σ"_, 1 /ϊι+δ < 0 0 for any δ > 0. Hence the conditions of Theorem 
3.7 are satisfied and the result follows. 

Compared with Theorem 3.1, this corollary imposes slightly more 
in the way of moment restrictions but allows the observations to be 
rather heterogeneous. 

It is useful to point out that a nonstochastic sequence can be viewed 
as a sequence of independent, not identically distributed, random 
variables where the distribution function of these random variables 
places probability one at the observed value. Hence, Corollary 3.9 
can be applied to situations in which we have fixed regressors, pro-
vided they are uniformly bounded, as the condition E\Zt\

x+ô < Δ < oo 
requires. Situations with unbounded fixed regressors can be treated 
using Theorem 3.7. 

To apply Corollary 3.9 to the linear model, we use the following fact. 

PROPOSITION 3.10: If { ( Ζ , , X , , €,)'} is an independent sequence, 
then { X ; X , } , {X, '€,}, { Z ; X , } , {Z, '€,}, and { Z ; Z , } are independent 
sequences. 

Proof: Immediate from Proposition 3.2(ii). 

To simplify the moment conditions that we impose, we use the 
following consequence of Holder's inequality. 

PROPOSITION 3.11 (Minkowski's inequality): If q^l and 
E\y\« < oo and E\Z\* < oo, then 

E\y + z\* ̂  [(E\y\4)l*« + (£|Z|*)"«]*. 

Proof: See Lukacs [1975, p. 11]. 

To apply Corollary 3.9 to Χ,'Χ,, we need to ensure that 
£ |Σ£ = 1 XtMXthj\

l+0 is bounded uniformly in /. This is accomplished 
by the following corollary. 

COROLLARY 3.12: Suppose E\Xjni\
l+â < A < oo for some δ > 0, all 

h = 1, . . . , / ? , / = 1, . . . , k, and all t. Then each element of X , R X , 
satisfies E\SPhamX XtniXthj\

l+0 < Δ 7 < oo for some δ>0, all /, j = 
1, . . . , k, and all t, where Δ' = ρι+δΑ. 
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Proof: By Minkowski's inequality, 

ε χ χ ( Λ,χ ί Α, < 2 
A = l Ι_Α=1 

( £ | Χ , Α / Χ , Λ , Γ Τ ( , + < 5) 

1+<S 

By the Cauchy-Schwartz inequality, 

E\XthiXtHjr* < [E\XthrT2[E\XUl+0Vn-

Since £|X?A |-| , +* < Δ < °°, Λ = 1, . . . , ρ, i = 1, . . . , k, it follows 
that for all h = 1, . . . , ρ and ij= 1, . . . , / c , 

The requirement that E\X2

hi\
l+0 < A < o° means that all the explana-

tory variables have moments slightly greater than 2 uniformly 
bounded. A similar requirement is imposed on the elements of X'tet. 

EXERCISE 3.13: Show that if £ |Χ ι Α ί€, Α | ι +* < Δ < oo for some δ > 0 , 

all h = 1, . . . , / ? , / = 1, . . . , / c , and alii, then each element of X[et 

satisfies£|Σ£=1 Χ / Α /β, ΑΓ + <5 < Δ ' < ooforsomei > 0,all / = 1, . . . X 
and all /, where Δ' = ρι+δΑ. 

We now have all the needed results to obtain a consistency theorem 
for the ordinary least squares estimator. Since the argument is analo-
gous to that of Theorem 3.5 we state the result as an exercise. 

EXERCISE 3 .14: Prove the following result. Suppose 

(i) y = XÄ> + €; 
(ii) {(X,, €,)'} is an independent sequence; 
(iii) (a) E(X'tet) = 0-

(b) E\Xthi€th\
l+0 < A < oo for some δ > 0 , all h = 1, . . . , 

/?, / = 1, . . . , k, and all /; 
(iv) (a) £ Ί Χ 2

Α , | 1 + < 5< Δ < ο ο for some δ> 0 , all h = 1, . . . , 
/?, / = 1, . . . , k, and all 

(b) M„ = E{X'X/ri) is uniformly positive definite. 

Then βη exists a.s. for all η sufficiently large, and βη ß Q . 

E\XthiXtHjr*<AVW2 = A, 
so that 

= ρι+δΑ = Δ'. 
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Compared with Theorem 3.5, we have relaxed the identical distri-
bution assumption at the expense of imposing slightly greater moment 
restrictions in (iiib) and (iva). Also note that (iva) implies that Mn is 
O(l). (Why?) 

The extra generality we have gained now allows treatment of situa-
tions with fixed regressors, or observations from a stratified cross 
section, and also applies to models with heteroskedastic errors. None 
of these cases is covered by Theorem 3.5. 

The result for the IV estimator is analogous. 

THEOREM 3.15: Suppose 

(i) y = XßQ + e; 
(ii) {(Ζ,, X,, €,)'} is an independent sequence; 
(iii) (a) £ ( Z ; O = 0; 

(b) E\Zthi€th\
l+0 < Δ < » for some δ > 0, all h = 1, . . . , 

ρ, i = 1, . . . , /, and all t] 
(iv) (a) E\ZiMXtHi\

l+* < Δ < » for some δ > 0, all h = 1, . . . , 
ρ, i = 1, . . . , IJ = 1, . . . , k, and all /; 

(b) Q„ = E(Z'X/n) has uniformly full column rank; 
(c) P„ — Ρ„ 0, where {P„} is O(l) and uniformly posi-

tive definite. 

Then βη exists a.s. for all η sufficiently large, and βη β0. 

Proof: By Proposition 3.9, {Z[et} and {Ζ,'Χ,} are independent se-
quences with elements satisfying the moment condition of Corollary 
3.8, given (iiib) and (iva), by arguments analogous to those of Corol-
lary 3.12 and Exercise 3.13. It follows from Corollary 3.9 that 
Z'e/n-^ 0 and Z' X/n - Q „ - ^ 0, where Q„ is 0 ( 1 ) given (iva) as a 
consequence of Jensen's inequality. Hence, the conditions of Exer-
cise 2.20 are satisfied and the results follow. 

III.3 Dependent Identically Distributed 
Observations 

The assumption of independence is often inappropriate for eco-
nomic time series, which typically exhibit considerable dependence. 
To cover these cases, we need laws of large numbers that allow the 
random variables of our model to be dependent. To speak precisely 
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about the kinds of dependence allowed, we need to make explicit some 
fundamental notions of probability theory that we have so far used 
implicitly. 

DEFINITION 3.16: A family (collection) g of subsets of a set Ω is a 
σ-field (σ-algebrä) provided 

(i) 0 and Ω belong to g ; 
(ii) if F belongs to g , then Fc (the complement of F in Ω) belongs 

to g ; 

(iii) if {Fi) is a sequence of sets in g , then U°°=1 F( belongs to 7. 

EXAMPLE 3.17: (i) Let Ω be any set, and let g be the family of all 
subsets of Ω. (ii) Let g be the family consisting of the following two 
subsets of Ω: Ω and 0 . 

EXAMPLE 3.18: The Borel field S is the smallest collection of sets 
(called the Borel sets) that includes 

(i) all intervals {ζ : — » < ζ < a), a Ε R; 
(ii) the complement Bc of any set Β in 35; 
(iii) the union U°°=i Bt of any sequence in j 8 . 

The Borel sets of R just defined are said to be generated by all the 
closed half-lines of R in (i). The same Borel sets would be generated by 
all the open half-lines of R, all the open intervals of R, or all the closed 
intervals of R. These Borel sets have the property that if Ρ is a 
probability measure and B G J8, then Ρ [Β] is well defined. There do 
exist subsets of the real line not in Έ for which probabilities are not 
defined, but constructing such sets is very complicated. Thus we can 
think of the Borel field as consisting of all the events on the real line to 
which we can assign a probability. Sets not in Έ will not define events. 

The Borel field just defined relates to real-valued random variables. 
A simple extension covers vector-valued random variables. 

DEFINITION 3.19: The Borel field £g, q < <», is the smallest collec-
tion of sets that includes 

(i) all intervals {ζ : — °° < ζ ^ a) where ζ is a q X 1 vector and 

(ii) the complement Bc of any set Β in Sg; 
(iii) the union U°Li Bt of any sequence {2?,} in & . 
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The same collection of sets £ q is also generated by all the open (or 
closed) sets of Rq, as well as by all the open intervals of Rq. In this 
notation, 35 and 351 mean the same thing. 

Recall that in the previous chapter we let a point ω correspond to an 
infinite sequence of random variables {Z,}. Generally, we are inter-
ested in infinite sequences {(λ,, X,, €,)'}. If ρ = 1, this is a sequence 
of random (1+ k + 1) X 1 vectors, whereas if/? > 1, this is a sequence 
of (/ + k + 1 ) Χ ρ matrices. Nevertheless, we can convert these matri-
ces into vectors by simply stacking the columns of a matrix, one on top 
of the other, to yield a p(l + k+\)X\ vector, denoted 
vec(Z,, X,, €,)'. (In what follows, we drop the vec operator and 
understand that it is implicit in this context.) Generally, then, we are 
interested in infinite sequences of ^-dimensional random vectors, 
where q = p(l + k+ 1 ). Corresponding to these are the Borel sets of 
Ml, defined as the Cartesian product of a countable infinity of copies of 
Rq, Rl = Rq X Rq X . . . . In what follows we can think of ω taking 
its values in Ω = Ri. The events in which we are interested are the 
Borel sets of Rl, which we define as follows. 

DEFINITION 3.20: The Borel sets of Rl, denoted g , are the smallest 
collection of sets that includes 

(i) all sets of the form Bi9 where each Bt Ε & and Bt = Rq 

except for finitely many /; 
(ii) the complement Fc of any set F in g ; 
(iii) the union U°Li Ft of any sequence {F,} in g . 

A set of the form specified by (i) is called a measurable finite-dimen-
sional product cylinder, so g is the Borel σ-field generated by all the 
measurable finite-dimensional product cylinders. The events to 
which we shall assign probabilities are the Borel sets of Rl, i.e., those in 
g . A probability space consists of the triple ( Ω , g , P), where Ρ is the 
probability function for ω that will determine the joint p.d.f. of {Z,}. 

When q = 1, the elements of the sequence {Z,} can be thought of as 
functions from Ω = Rl to the real line R that simply pick off the tth 
coordinate of ω. This is made explicit by writing Ζ,(ω) in place of 
Z t . When q > 1, Ζ,(ω) maps Rl into Rq. 

DEFINITION 3.21: A function g on Ω to R is %-measurable if for 
every real number a the set [ω : g(œ) ^ a] G g . 

EXAMPLE 3.22: Set<?=l. Then Z /(o;)asjust defined is g-measur-
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able since [œ:Zt(œ)^ a] = [zl9 . . . , z ,_ l 5 zt9 z,+,, . . .:zx< 
» , . . . , Z f_ ! < oo, ζ, < a, z,+, < oo, . . .] G g for any A. 

When a function is g-measurable, it means that we can express the 
probability of an event, say, [Zt ^ a]9 in terms of the probability of an 
event in g , say, [ω : Ζ,(ω) ^ α]. In fact, a random variable is precisely 
an g-measurable function from Ω to R. 

In Definition 3 .21 the σ-field g can be replaced by any σ-field S, in 
which case we say that the function of g is ^-measurable. When the 
σ-field is taken to be g , the Borel sets of R£, we shall drop explicit 
reference to g and simply say that the function g is measurable. 
Otherwise, the relevant σ-field will be explicitly identified. 

PROPOSITION 3 . 2 3 : Let/and g be ^-measurable real-valued func-
tions, and let c be a real number. Then the functions cf9f+g9 fg, and 
l/l are also g-measurable. 

Proof: See Bartle [ 1 9 6 6 , Lemma 2 . 6 ] . 

EXAMPLE 3 .24 : If Zt(co) is measurable, then Zt(co)/n is measurable, 
so that Ζη(ω) = Σ?_ι Zt(co)/n is measurable. 

A function from Ω to W is measurable if and only if each component 
of the vector valued function is measurable. The notion of measura-
bility extends to transformations from Ω to Ω in the following way. 

DEFINITION 3 . 2 5 : A one-to-one transformation! Τ: Ω —* Ω de-
fined on (Ω, g , P ) is measurable provided that r

_ 1
( g ) C g . 

In other words, the transformation Tis measurable provided that any 
set taken by the transformation (or its inverse) into g is itself a set in 
g . This ensures that sets that are not events cannot be transformed 
into events, nor can events be transformed into sets that are not events. 

EXAMPLE 3 .26 : Foranya> = (. . . , z,_ 2, z,_ 1 ? zt9 zt+l9 zt+2, . . .) 
let ω ' = 7 ω = (. . . , zt_x, zt9 ζί+ι, z,+ 2, z,+ 3, . . .), so that Γ trans-
forms ω by shifting each of its coordinates back one location. Then Τ 
is measurable since Τω is in g and Τ~ιω is in g . 

t The transformation Τ maps a point of Ω, say ω, into another point of Ω, say ω' = 
Τω. When Γ operates on a set F, it should be understood as operating on each element 
of F. Similarly, when Γ operates on a family g- , it should be understood as operating on 
each set in the family. 
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The transformation of this example is often called the shift, or the 
backshift operator. By using such transformations, it is possible to 
define a corresponding transformation of a random variable. For 
example, set Ζλ(ω) = Ζ(ω), where Ζ is a measurable function from Ω 
to R; then we can define the random variables Ζ2(ω) = Ζ(Γω), 
Ζ3(ω) = Ζ(Τ2ω), and so on, provided that Tis a measurable transfor-
mation. The random variables constructed in this way are said to be 
random variables induced by a measurable transformation. 

DEFINITION 3.27: A transformation Τ from Ω to Ω is measure 
preserving if it is measurable and if P(T~lF) = P(F) for all F in g . 

The random variables induced by measure-preserving transforma-
tions then have the property that Ρ[Ζλ ^ a] = Ρ[ω:Ζ(ω) ^ a] = 
Ρ[ω: Ζ(Τω) ^ a] = P[Z2 ^ a]. In fact, such random variables have 
an even stronger property. We use the following definition. 

DEFINITION 3.28: Let Gx be the joint distribution function of the 
sequence {Ζ,, Z 2 , . . .}, where Z, is a q X 1 vector, and let GT+X be 
the joint distribution function of the sequence { Ζ τ + 1, Ζ τ + 2 , . . .}. 
The sequence {Z,} is stationary if and only if Gx = GT+l for each τ ^ 1. 

In other words, a sequence is stationary if the joint distribution of the 
variables in the sequence is identical, regardless of the date of the first 
observation. 

PROPOSITION 3.29: Let Ζ be a random variable (i.e., Ζ(ω) is a 
measurable function) and Γ be a measure-preserving transformation. 
Let Ζ,(ω) = Ζ(ω), Ζ2(ω) = Ζ(Τω\ . . . , Ζη(ω) = Ζ(Τη~ιω) for 
each ω in Ω. Then {Ζ,} is a stationary sequence. 

Proof: Stout [1974, p. 169]. 

A converse to this result is also available. 

PROPOSITION 3.30: Let {Z,} be a stationary sequence. Then there 
exists a measure-preserving transformation Τ defined on (Ω, g , P) 
such that Ζ 1(ω) = Ζ,(ω), Ζ2(ω) = Ζ,(7ω), Ζ 3(ω) = Ζχ(Τ

2ώ), 
. . . ,Ζ„(ω) = Ζ , ( Γ ' ΐ - 1 ω ) ί θ Γ ^ 1 ω ΐ η Ω . 

Proof: Stout [1974, p. 170]. 

EXAMPLE 3.31: Let {Ζ,} be a sequence of i.i.d. Ν(0, 1) random 
variables. Then {Z,} is stationary. 
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The independence imposed in this example is crucial. If the {Z,} is 
simply identically distributed N(0, 1), the sequence is not necessarily 
stationary, because it is possible to construct different joint distribu-
tions that all have normal marginal distributions. By changing the 
joint distributions with /, we could violate the stationarity condition 
while preserving marginal normality. Thus stationarity is a strength-
ening of the identical distribution assumption, since it applies to joint 
and not simply marginal distributions. On the other hand, stationar-
ity is weaker than the i.i.d. assumption, since i.i.d. sequences are 
stationary, but stationary sequences do not have to be independent. 

Does a version of the law of large numbers, Theorem 3 . 1 , hold if the 
i.i.d. assumption is simply replaced by the stationarity assumption? 
The answer is no, unless additional restrictions are imposed. 

EXAMPLE 3 .32 : Let cUt be a sequence of i.i.d. random variables 
uniformly distributed on [0 , 1] and let Ζ be N(0, 1), independent of 
%lnt= \,2,_. . . . Define + Then {2/ ,} is stationary 
(why?), but Vn = Σ?=1 VJn does not converge to E{Vt) = \. Instead, 

In this example, 2 / n converges to a random variable, Ζ + rather than 
to a constant. The problem is that there is too much dependence in 
the sequence {2 / ,} . No matter how far into the future we take an 
observation on 2 / , , the initial value 2 / \ still determines to some extent 
what Vt will be, as a result of the common component Z. In fact, the 
correlation between yi and yt is always positive for any value of /. 

To obtain a law of large numbers, we have to impose a restriction on 
the dependence or "memory" of the sequence. One such restriction is 
the concept of ergodicity. 

DEFINITION 3 . 3 3 : Let {Z,} be a stationary sequence and let Tbe the 
measure-preserving transformation of Proposition 3 . 3 0 defined on 
(Ω, g , P). Then {Z,} is ergodic if and only if for any two events Fand 
G G g , lim η"1 Σ", P(FD TG) = P(F) P(G). 

η—
>0
° 

If Fand G were independent, then P(F Π G) =P(F) P(G). We can 
think of TlG as being the event G shifted / periods into the future, and 
since P(TlG) = P(G) when Τ is measure preserving, this definition 
says that an ergodic process (sequence) is one such that for any events 
F and G, F and T'G are independent on average in the limit. Thus 
ergodicity can be thought of as a form of "average asymptotic inde-
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pendence." For more on measure-preserving transformations, sta-
tionarity, and ergodicity the reader may consult Doob [ 1 9 5 3 , pp. 
1 6 7 - 1 8 5 ] and Rosenblatt [ 1 9 7 8 ] . 

The desired law of large numbers can now be stated. 

THEOREM 3 . 3 4 (Ergodic theorem): Let { Z , } be a stationary er-
godic scalar sequence with E\Zt\< °°. Then Zn μ = E(Zt). 

Proof: See Stout [ 1 9 7 4 , p. 181] . 

To apply this result, we make use of the following theorem. 

THEOREM 3 . 3 5 : Let g be an g-measurable function onto IR* and 
define VX = g(Zn Z , + 1 , . . .), where Zt is g XI. (i) If { Z , } is 
stationary, then {VT} is stationary, (ii) If {Zt} is stationary and 
ergodic, then {2/,} is stationary and ergodic.f 

Proof: See Stout [ 1 9 7 4 , pp. 170, 182] . 

PROPOSITION 3 .36 : If {(Ζ,, X,, €,)'} is a stationary ergodic se-
quence, then {X;X,}, {X,'€,j, {Ζ,'Χ,}, {Z,'€,}, and {Z;Z,} are stationary 
ergodic sequences. 

Proof: Immediate from Theorem 3 . 3 5 and Proposition 3 . 2 3 . 

Now we can state a result applicable to time-series data. 

THEOREM 3 .37 : Suppose 

(i) y = XÄ, + €; 
(ii) {(X,, €,)'} is a stationary ergodic sequence; 
(iii) (a) £(X,'€,) = 0; 

(b) E\Xthieth\ < », h = 1, . . . , A / = 1, . . . , k; 
(iv) (a) £ |Χ, Λ /|

2 < oo, Λ = l, . . . , A / = 1, . . . , 
(b) M = E(X'tXt) is positive definite 

Then βη exists a.s. for all η sufficiently large, and ßn ßQ. 

Proof: We verify the conditions of Theorem 2 . 1 2 . Given (ii), 
{X'tet} and {Χ,'Χ,} are stationary ergodic sequences by Proposition 
3 .36 , with elements having finite expected absolute values (given (iii) 
and (iv)). By the ergodic Theorem 3 .34 , X'e/n-^-^O and 

t The fact that g depends on the present and possibly infinite future of the sequence 
{Z,} is an interesting feature of this result. If the process {Z,} had an infinite past as well, 
g could also depend on the infinite past of {Z,} without affecting the validity of this 
result. 
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X' X/n M, finite and positive definite. Hence, the conditions of 
Theorem 2 . 1 2 hold and the results follow. 

Compared with Theorem 3 .5 , we have replaced the i.i.d. assump-
tion with the strictly weaker condition that the regressors and errors 
are stationary and ergodic. In both results, only the finiteness of 
second-order moments and cross moments is imposed. Thus 
Theorem 3.5 is a corollary of Theorem 3 . 3 7 . 

A direct generalization of Exercise 3 .6 for the IV estimator is also 
available. 

EXERCISE 3 .38 : Prove the following result. Given 

(i) y = X& + €; 
(ii) {(Ζ,, X,, €,)'} is a stationary ergodic sequence; 
(iii) (a) £(Z,'€,) = 0; 

(b) E\Zthieth\«»,h=l9 . . . , p , z = l , . . . , / ; 
(iv) (a) E\ZtMXtHi\<*>9h=l, . . . , p , z = 1, . . . , /, and 

j= 1, . . . , k\ 
(b) Q = £(Z;X,) has full column rank; 
(c) P „ Ρ , finite and positive definite. 

Then βη exists a.s. for all η sufficiently large, and βη β0. 

Economic applications of Theorem 3 . 3 7 and Exercise 3 . 3 8 depend 
on whether it is reasonable to suppose that economic time series are 
stationary and ergodic. Ergodicity is often difficult to ascertain theo-
retically (although it does hold for certain Markov sequences; see Stout 
[ 1974 , pp. 185 - 2 0 0 ] ) and is impossible to verify empirically (since this 
requires an infinite sample). Stationarity, on the other hand, is a 
property that can be investigated empirically. However, many im-
portant economic time series seem not to be stationary but heteroge-
neous, exhibiting means, variances, and covariances that change over 
time. 

III.4 Dependent Heterogeneously 
Distributed Observations 

To apply the consistency results of the preceding chapter to depen-
dent heterogeneously distributed observations, we need to find condi-
tions that ensure that the law of large numbers continues to hold. 
This can be done by replacing the ergodicity assumption with some-
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what stronger conditions on the dependence of a sequence, known as 
mixing conditions. 

To specify these conditions, we use the following definition. 

DEFINITION3.39: TheBorelfieldgeneratedby{Ζ,(ω),/ = «, . . . , 
η + m}, denoted Sn

n

+m = o(Zn, . . . , Z n + m\ is the smallest 
collection of subsets of Ω that includes 

(i) all sets of the form X ? " / RQ
 X Bt Χ Γ = „ + ™ + ι R*, where 

each 5, Ε j 8 q ; 
(ii) the complement A c of any set A in % n

n

+ m\ 
(iii) the union U°Li At of any sequence in £" n

+ m. 

The σ-field % n

n

+ m is the smallest σ-field of subsets of Ω with respect to 
which Ζ,(ω), t = n, . . . , η + m are measurable. In other words, 

is the smallest collection of events that allows us to express the 
probability of an event, say, [Z„ < a{, Zn+l < a2\, in terms of the 
probability of an event in Bn

n

+m, say [ω:Ζη(ω) < ax, Ζη+ι(ω) < a2\ 
The definition of mixing is given in terms of the Borel fields generated 
by subsets of the history of a process extending infinitely far into both 
the past and future, {Z, . For our purposes, we can think of Ζ ! as 
representing the first observation available to us, so Zt is unobservable 
for / < 0. In what follows, the fact that Z,, / ^ 0 is unobservable does 
not matter. All that does matter is the behavior of Z,, / ^ 0, if we 
could observe it. 

DEFINITION 3.40: Let Έΐ^ = σ(. . . , Zn) be the smallest collec-
tion of subsets of Ω that contains the union of the σ-fields Έη

α as 
a—»— °°; let £™+m= a(Zn+m, . . .) be the smallest collection of 
subsets of Ω that contains the union of the σ-fields 35£+w as a —* °°. 

Intuitively, we can think of OBIœ as representing all the information 
contained in the past of the sequence {Z,} up to time n, whereas $%+m 

represents all the information contained in the future of the sequence 
{Zt} from time η + m on. 

We now define two measures of dependence between σ-fields. 

DEFINITION 3.41: Let S and Ή be σ-fields and define 

Φ(<?, Ή) - sup{GŒSfĤ :PiG)>0)\P(H\G) - P(H)\, 

α(9,Ή) - suv{Ĝ HŒ„}\P(G Π H)- P(G)P(H)\. 

Intuitively, φ and a measure the dependence of the events in Ή on 
those in 9 in terms of how much the probability of the joint occurrence 



111.4 Dependent Heterogeneously Distributed Observations 45 

of an event in each σ-algebra differs from the product of the probabili-
ties of each event occurring. The events in S and Ή are independent if 
and only if φ and a are zero. The function a provides an absolute 
measure of dependence and φ a relative measure of dependence 

DEFINITION 3.42: For a sequence of random vectors {Zt}, with Slœ 

and B„+m as in Definition 3.40, define the mixing coefficients 0(m) = 
sup„ φ(£ΐΛ9 $:+m) and a(m) - sup„ a(Zlœ, $;+m). 

If, for the sequence { Z , } , —> 0 as m —> °°, { Z , } is called φ-mix-
ing. If, for the sequence { Z , } , a(m) —> 0 as m —• <», { Ζ , } is called 

The quantities </>(ra) and a(m) measure how much dependence exists 
between events separated by at least m time periods. Hence, if 

= 0 or a(m) = 0 for some m, events m periods apart are inde-
pendent. By allowing </>(m) or a(m) to approach zero as m —> <*>, we 
allow consideration of situations in which events are independent 
asymptotically. In the probability literature, φ-mixing sequences are 
also called uniform mixing (see Iosifescu and Theodorescu [1969]), 
whereas α-mixing sequences are called strong mixing (see Rosenblatt 
[1956]). Because </>(m) ^ a(m\ 0-mixing implies α-mixing. 

EXAMPLE 3.43: (i) Let { Z , } be a y-independent sequence (i.e., Z , is 
independent of Z , _ T for all τ > γ). Then 0(m) = a(m) = 0 for all 
m>y. (ii) Let { Z , } be a nonstochastic sequence. Then it is an 
independent sequence, so </>(m) = a(m) = 0 for all m > 0. (iii) Let 
Z , = /?Z ,_ ! + e,, t = 1, . . . , A2, where |/?| < 1 and et ~ i.i.d. iV(0, 1). 
(This model is called the Gaussian AR( 1) process.) Then a(m) —• 0 as 
m —> o°, although </>(w) -/* 0 as m —• o° (Ibragimov and Linnik [1972, 
pp. 312-313]). 

The concept of mixing has a meaningful physical interpretation. 
Imagine a dry martini initially poured so that 99% is gin and 1% is 
vermouth (placed in a layer at the top). The martini is steadily stirred 
by a swizzle stick, and we observe the proportions of gin and vermouth 
in any measurable set (i.e., volume of martini). If these proportions 
tend to 99 and 1% after many stirs, regardless of which volume we 
observe, then the process is mixing. In this example, the stochastic 
process corresponds to the position of a given particle at each point in 
time, which can be represented as a sequence of three-dimensional 
vectors { Z , } . 
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The asymptotic independence notion of mixing is a stronger mem-
ory requirement than that of ergodicity, since, for a stationary se-
quence, mixing implies ergodicity, as the next result makes precise. 

PROPOSITION 3 .44 : Let {Z,} be a stationary sequence. If a(m) —• 0 

as m —»' », then {Z,} is ergodic. 

Proof: See Rosenblatt [ 1 9 7 8 ] . 

Note that if φ{τη) —• 0 as m —> oo? then a(m) —> 0 as m —> <»9 so that 
φ-mixing processes are also ergodic. Ergodic processes are not neces-
sarily mixing, however. For more on mixing and ergodicity, see 
Rosenblatt [ 1 9 7 2 and 1 9 7 8 ] . 

To state the law of large numbers for mixing sequences we use the 
following definition. 

DEFINITION 3 . 4 5 : Let r be a real number such that 1 < r < oo. (i) if 
φ(ϊη) = Ο (m~k ) for λ > r/(2r — 1 ), then φ(νή) is of size r/(2r — 1 ). (ii) 
If r > 1 and a(m) = 0(m~k) for λ > r/(r— 1), then a(m) is of size 
r / ( r - l ) . 

This definition allows precise statements about the memory of a 
random sequence that we shall relate to moment conditions expressed 
in terms of r. As r —> °°, the sequence exhibits more and more 
dependence, while as r —> 1, the sequence exhibits less dependence. 

EXAMPLE 3 .46 : (i) Let {Z,} be independent 7V(0, σ2). Then {Z,} 
has φ{νή) of size r/(2r — 1 ) for r = 1 . (ii) Let Z, be a Gaussian AR( 1 ) 
process. It can be shown that {Z,} has a(m) of size r/(r — 1) for any 
r > 1, since a(m) decreases exponentially with m. 

The result of this example extends to many finite autoregressive 
moving average (ARMA) processes. Under general conditions, finite 
ARMA processes have exponentially decaying memories. 

Using these definitions we can state a law of large numbers, due to 
McLeish [ 1 9 7 5 ] , which applies to heterogeneous dependent se-
quences. 

THEOREM 3 .47 (McLeish): Let {Z,} be a scalar sequence with 
φ(τή) of size r/(2r— 1) or a(m) of size r/(r— 1), r > 1, with finite 
means μ, = E(Zt\ If for some δ, 0 < δ < r, Σ Γ = 1 (E\Zt - μ,|Γ + <7 
r+sy/r < α), then Ζ„ - μ„ 0 . 

Proof: See McLeish [ 1 9 7 5 , Theorem 2 . 1 0 ] . 
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This result generalizes the Markov law of large numbers, Theorem 
3.7. (There we have r = 1.) 

Using an argument analogous to that used in obtaining Corollary 
3.9, we obtain the following corollary. 

COROLLARY 3.48: Let {Zt} be a sequence with φ(τή) of size 
r/(2r - 1) or a(m) of size r/(r - 1), r > 1, such that E\Zt\

r+â < A < <*> 
for some δ > 0, and all t. Then Zn — fln 0. 

Setting r arbitrarily close to unity yields a generalization of Corollary 
3.9 that would apply to sequences with exponential memory decay. 
For sequences with longer memories, r is greater, and the moment 
restrictions increase accordingly. Here we have a clear trade-off 
between the amount of allowable dependence and the sufficient mo-
ment restrictions. 

To apply this result, we use the following theorem. 

THEOREM 3.49: Let g be a measurable function onto Uk and define 
Vt = g(Zt, Zt+l, . . . , Zt+T), where τ is finite. If the sequence of 
q X 1 vectors {Zt} is mixing such that <f)(m) (a(m)) is 0(m~x) for some 
λ > 0, then {Vt) is mixing such that φy(m)(oίy(m)) is 0(m~ A) . 

Proof: See White and Domowitz [1984, Lemma 2.1]. 

In other words, measurable functions of mixing processes are mixing 
and of the same size. Note that whereas functions of ergodic processes 
retained ergodicity for any τ, finite or infinite, mixing is guaranteed 
only for finite τ. 

PROPOSITION 3.50: If { (Ζ , , X , , €,)'} is a mixing sequence, then 
{ X ; X , } , { X ; € , } , { Z ; X , } , {Z;e,}, and { Z ; Z , } are mixing sequences of the 
same size. 

Proof: Immediate from Theorem 3.49 and Proposition 3.23. 

Now we can generalize the results of Exercise 3.14 to allow for 
dependence as well as heterogeneity. 

EXERCISE 3.51: Prove the following result. Suppose 

(i) y = X & + €; 

(ii) { (X , , e,)'} is a mixing sequence with φ(ηι) of size r/(2r — 1), 
r > 1 or a(m) of size r/(r — 1), r > 1; 

(iii) (a) £ ( X , ' € , ) = 0; 
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(b) E\Xthieth\
r+ô < A < oo for some <?>0, A = l , . . . , 

p, i = 1, . . . , / c , and all t\ 
(iv) (a) E\X2

ni\
r+ô < A < oo for some J > 0 and all h = 1, . . . , 

ρ, i = 1, . . . , k and all t; 
(b) M n = E(X'X/n) is uniformly positive definite. 

Then βη exists a.s. for all η sufficiently large, and ßn ßQ. 

From this result, we can obtain the result of Exercise 3.14 as a direct 
corollary by setting r = 1. Compared to our first consistency result, 
Theorem 3.5, we have relaxed the independence and identical distri-
bution assumptions, but strengthened the moment requirements 
somewhat. Among the many different possibilities which this result 
allows, we can have lagged dependent variables and nonstochastic 
variables both appearing in the explanatory variables X,. The regres-
sion errors et may be heteroscedastic or may be serially correlated. 

In fact, Exercise 3.51 is an extremely powerful result that appears 
applicable to a very wide range of situations faced by economists. For 
further discussion of linear models with mixing observations, see 
Domowitz [1983]. 

Applications of Exercise 3.51 often use the following result, which 
allows the interchange of expectation and infinite sums. 

PROPOSITION 3.52: Let {Zt} be a sequence of random variables 
such that Σ~=1 E\Zt\ < oo. Then Σ~=1 Zt converges a.s. and 
Ε(ΣΓ-, Ζ,) = ΣΓ-! E(Zt)< oo. 

Proof: See Billingsley [1979, p. 181]. 

This result is useful in verifying the conditions of Exercise 3.51 for the 
following exercise. 

EXERCISE 3.53: (i) State conditions that are sufficient to ensure the 
consistency of the OLS estimator for the model y, = ay,-! + ß\t + 
where y,, x,, and €, are scalars. Hint: The Minkowski inequality 
applies to infinite sums, that is, given {Zt} such that Σ"β1 (E\Zt\

p)l/p 

< oo, then £|Σ"_, Zt\
p < ( Σ ^ (E\Zt\

p)xlp)p. (ii) Find a simple model 
to which Exercise 3.51 does not apply. 

Conditions for the consistency of the IV estimator are given by the 
next result. 
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THEOREM 3.54: Suppose 

(i) y = Xß0 + e-
(ii) {(Z„ X,,€,)'} is a mixing sequence with φ(ηι) of size 

r/(2r — 1 ), r > 1 or a(m) of size r/(r — 1 ), r > 1 ; 
(iii) (a) £(Z,'€,) = 0; 

(b) £ | Ζ , Α /€ , Α Γ + * < Δ < » for some δ>0 and all h = 
1, . . . ,ρ , ζ = 1, . . . , / , and/; 

(iv) (a) E\ZthiXthj\
r+ô<A<oo for some δ>0 and all A = 

1, . . . ,p , /' = 1, . . . , lj= 1, . . . , fc, and/; 
(b) Q„ ~ E(Z'X/n) has uniformly full column rank; 
(c) Pn — P„-^—0, where {P„} is O(l) and uniformly 

positive definite. 

Then βη exists a.s. for all η sufficiently large, and ßn ßö. 

Proof: By Proposition 3.50,{Z,'€,}and{Z,'X,}aremixingsequences 
with elements satisfying the conditions of Corollary 3.48 (given (iiib) 
and (iva)). It follows from Corollary 3.48 that Z'e/n^-^O and 
Ζ' Χ/η — Q„ 0, where Qn is 0 ( 1 ), given (iva) as a consequence of 
Jensen's inequality. Hence the conditions of Exercise 2.20 are satis-
fied and the results follow. 

Although mixing is an appealing dependence concept, it shares with 
ergodicity the property that it can be somewhat difficult to verify 
theoretically and is impossible to verify empirically. An alternative 
dependence concept that is easier to verify theoretically is a form of 
asymptotic noncorrelation. 

DEFINITION 3.55: The scalar sequence {Z,} has asymptotically 
uncorrelated elements (or is asymptotically uncorrected) if there exist 
constants {ρτ9 τ > 0} such that 0 < ρτ < 1, Σ" = 0 ρτ < oo and 
cov(Z / 5 Ζ,+ τ) < ρτ (var Ζ, var Ζ ,+ τ )

1 / 2 for all τ > 0, where var Z, < oo 
for all t. 

Note that pT is only an upper bound on the correlation between Z, 
and Ζ,+ τ and that actual correlation may depend on /. Further, only 
positive correlation matters, so that if Z, and Ζ,+ τ are negatively 
correlated, we can set px = 0. Also note that for Σ^=0 ρτ < °°> it is 
necessary that ρτ —• 0 as τ —* °°, and it is sufficient that for all τ 
sufficiently large, ρτ < τ~ι~δ for some δ > 0. 
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EXAMPLE 3.56: Let Z, = pZt_x + €„ where et is i.i.d., E(et) = 0, 
var €, = al, E(Zt_{et) = 0. Then corr(Z,, Ζί+τ) = ρτ. If 0 </? < 1, 
Σ~ = 0 ρ

τ = l/( 1 — ρ) < », so the sequence {Z,} is asymptotically uncor-
rected. 

If a sequence has constant variance and has covariances that depend 
only on the time lag between Z, and Ζ / + τ, the sequence is said to be 
covariance stationary. (This is implied by stationarity but is weaker 
because a sequence can be covariance stationary without being sta-
tionary.) Verifying that a covariance stationary sequence has asymp-
totically uncorrected elements is straightforward when the process has 
a finite ARMA representation (see Granger and Newbold [1977, Ch. 
1 ]). In this case, ρτ can be determined from well-known formulas (see, 
e.g., Granger and Newbold [1977, Ch.l]) and the condition 
Σ~ = 0 Λ < 0 0 c a n be directly evaluated. Thus covariance stationary 
sequences as well as stationary ergodic sequences can often be shown 
to be asymptotically uncorrected, although an asymptotically uncor-
rected sequence need not be stationary and ergodic or covariance 
stationary. Under general conditions on the size of φ{νή) or a(m), 
mixing processes can be shown to be asymptotically uncorrected. 
Asymptotically uncorrected sequences need not be mixing, however. 

A law of large numbers for asymptotically uncorrected sequences is 
the following. 

THEOREM 3.57: Let {Z,} be a scalar sequence with asymptotically 
uncorrected elements with means μι = E(Zt) and a? = varZ, < 
Δ < oo. Then Zn — fln 0. 

Proof: Immediate from Stout [1974, Theorem 3.7.2]. 

Compared with Corollary 3.48, we have relaxed the dependence 
restriction from asymptotic independence (mixing) to asymptotic 
uncorrelation, but we have altered the moment requirements from 
restrictions on moments of order r + δ (r ^ 1, δ > 0) to second mo-
ments. Typically, this is a strengthening of the moment restrictions. 

Since taking functions of random variables alters their correlation 
properties, there is no simple analog of Proposition 3.2, Theorem 3.35, 
or Theorem 3.49. To obtain consistency results for the OLS or IV 
estimators, one must directly assume that all the appropriate se-
quences are asymptotically uncorrected so that the a.s. convergence 
assumed in Theorem 2.18 or Exercise 2.20 holds. Since asymptoti-
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cally uncorrelated sequences will not play an important role in the rest 
of this book, we omit stating and proving results for such sequences. 

III.5 Martingale Difference Sequences 

In all of the consistency results obtained so far, there has been the 
explicit requirement that either E(X'tet) = 0 or E{Z[et) = 0. Eco-
nomic theory must play a crucial role in justifying this assumption. In 
fact, it often occurs that economic theory is used to justify the stronger 
assumption that E(et\Xt) = 0 or E(et\Zt) = 0, which then implies 
E(X'tet) = 0 or E(Z'tet) = 0. In particular, this occurs when the 
regression function XtßQ is viewed as the value of y, we expect to 
observe when X, occurs. In other words, when X,/?0, is the condi-
tional expectation of y, given X,, i.e., £'(y / |X i)= XtßQ. Then we 
define et = y, — £"(y,|X,) = y, — XtßQ. Using the algebra of condi-
tional expectations given below, it is straight-forward to show that 
£(€,|X,) = 0. 

One of the more powerful economic theories (powerful in the sense 
of imposing a great deal of structure on the resulting regression model) 
is the theory of rational expectations. Often this theory cannot only 
be used to justify the assumption that E(et\Xt) = 0 but further that 
E(et\Xn X,_i , . . . ; € , _ ! , € , _ 2 , . . . ) = 0, i.e., that the conditional 
expectation of en given the entire past history of the errors e, and the 
current and past values of the explanatory variables X,, is zero. This 
assumption allows us to apply laws of large numbers for martingale 
difference sequences, which are convenient and powerful. 

To define what martingale difference sequences are and to state the 
associated results, we need to provide a more complete background on 
the properties of conditional expectations, which we draw from Doob 
[1953]. 

So far we have relied on the reader's intuitive understanding of what 
a conditional expectation is. A more precise definition is based on the 
following notion. 

DEFINITION 3.58: Let 9 be a σ-field of sets in Ω, and let 9' be the 
σ-field of sets in Ω that are either sets of 9 or that have the form GU F 
where G e S and F is a subset of a 9 set which has probability zero. 
We call 9' the completion of 9. 



52 III Laws of Large Numbers 

DEFINITION 3.59: The conditional expectation of a random vari-
able V given S is defined as any function E(V\S) from Ω to W that is 
measurable with respect to <?', that has E(|E(2/|<?)|) < °°, and that 
satisfies the equation 

E(\[G]E(y\s)) = E(\[G]y) 

for all sets G in S9 where 1 [ G ] is the indicator function equal to unity on 
the set G and zero elsewhere. 

Because E(y\S) is a measurable function from Ω to R 1, it is a 
random variable. As Doob [1953, p. 18] notes, this definition actually 
defines an entire class of random variables each of which satisfies the 
above definition, because any random variable with probability one 
equal to any function E(y \ S) satisfying this definition also satisfies this 
definition. Note that the conditional expectation has been defined as 
a function measurable with respect to S'. This is done to rule out 
certain pathological possibilities that could otherwise arise. However, 
if a random variable is measurable with respect to S'9 it is equal with 
probability one to a random variable measurable with respect to S (see 
Doob [1953, p. 605]) so that there is a version of E(y\S) measurable 
with respect to 8. We can think of this version as the one being 
utilized in any given formula, because generally any member of the 
class of random variables specified by the definition can be used in any 
expression involving a conditional expectation. 

To put the conditional expectation in more familiar terms, we relate 
this definition to the expectation of y t conditional on other random 
variables Zt9 t = a, . . . , b9 as follows. 

DEFINITION 3.60: Let yt be a random variable such that 
E(\yt\) < oo and let £b

a = σ(Ζα9 Za+l9 . . . , Zb) be the σ-algebra 
generated by the random vectors Zt91 = a9 . . . , b. Then the condi-
tional expectation of yt given Zt91 = a9 . . . , b9 is defined as 

E{yt\Za9 . . . ,Z, ) -£(2/ , |35») . 

If we let E(yt\£*) be measurable with respect to !Bb

a9 the conditional 
expectation can be expressed as a function of Zt, t = a9 . . . , b9 as the 
following result shows. 

PROPOSITION 3.61: Let E(Vt\Za9. . . . , Zb) be measurable with 
respect to .S^. Then there exists a function g(Za9 . . . 9Zb) measur-
able with respect to such that 
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E(yt\z„ . . . ,zb) = g{za,. . . ,zb). 
Proof: Immediate from Doob [ 1 9 5 3 , Theorem 1.5, p. 6 0 3 ] . 

EXAMPLE 3 .62 : Let 2/ and Ζ be jointly normal with E(V) = 
E(Z) = 0 , var 2/ = G%, var Ζ = σ | , cov(2/, Ζ ) = σ<, ζ. Then 

E(y\Z) = (aYZ/G
2

z)Z. 

The role of economic theory can now be interpreted as specifying a 
particular form for the function g in Proposition 3 . 6 1 , although, as we 
can see from Example 3 . 62 , the g function is in fact a direct conse-
quence of the form of the joint distribution of the random variables 
involved. For an economic theory to be completely legitimate, the g 
function specified by that economic theory must be identical to that 
implied by the joint distribution of the random variables; otherwise 
the economic theory provides only an approximation to the statistical 
relationship between the random variables of the model. 

We now state some useful properties of conditional expectations. 

PROPOSITION 3 . 6 3 : Let 9' and Ή' be the completions of σ-fields S 
and Ή and suppose S' C Ή' and that some (and therefore every) 
version of Ε{ν\Ή) is measurable with respect to S'. Then 

E(y\K) = E(y\S), 

with probability one. 

Proof: See Doob [ 1 9 5 3 , p. 2 1 ] . 

In other words, conditional expectations with respect to two differ-
ent σ-fields, one contained in the other, coincide provided that the 
expectation conditioned on the larger σ-field is measurable with re-
spect to the smaller σ-field. Otherwise, no necessary relation holds 
between the two conditional expectations. 

EXAMPLE 3 .64 : Suppose E(ytffit_x) = 0 , where Ή^χ = σ(. . . , 
2/ ,_ 2, yt.x). Then E(yt\yt.x) = O, since E{Vt\yt-x) = E(yt\St_x\ 
where St_x = σ(2/,_,) satisfies S\_x C ft't_x and E(yt\ftt_x) = 0 is 
measurable with respect to S't_x. 

PROPOSITION 3 . 6 5 : If 2/ is a random variable and Ζ is a random 
variable measurable with respect to S such that £]2/|<<» and 
E\Zy\ < ©ο, then with probability one 
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E(zy\s) = ZE(y\s) 
and 

E([y - E(y\S)]Z) = 0. 

Proof: See Doob [ 1 9 5 3 , p. 2 2 ] . 

EXAMPLE 3 .66 : Let 8 = σ(Χ,). Then E(X'tyt\Xt)= X,'£(y,|X,). 
Define€, - y, - E(yt\Xt). Then E(X'tet) = E(X't[yt - E(yt\Xt)]) = 0. 

If we set E(yt\Xt) = XtßQ, the result of this example justifies the 
orthogonality condition for the OLS estimator, E(X[et) = 0. 

PROPOSITION 3 .67 (Linearity): Let al9 . . . , ak be finite con-
stants and suppose . . . , Vk are random variables such that 
£ ( Σ * = 1 ajVj) < ». Then 

Proof: See Doob [ 1 9 5 3 , p. 2 3 ] . 

A version of Jensen's inequality also holds for conditional expecta-
tions. 

PROPOSITION 3 .68 (Conditional Jensen's inequality): Let g: 
Ul —> Ul be a convex function on an interval Β cW and let V be a 
random variable such that P [ 2 / E 5 ] = l . If E\V\<<*> and 
E\g(V)\ < oo, then 

Proof: See Doob [ 1 9 5 3 , p. 3 3 ] . 

EXAMPLE 3 .69 : Let g(y) = \y\. It follows from the conditional 
Jensen's inequality that \E(V\8)\ < E(\V\\S). 

One of the most useful properties of the conditional expectation is 
given by the law of iterated expectations. 

PROPOSITION 3 . 7 0 (Law of iterated expectations): Let 8 be a 
σ-field of sets in Ω. Then 

E[E(y\8)] = E(V). 

g[E(y\s)]^E(g(y)\s) 

for any Borel field 8. If g is concave, then 

g[E(y\S)]>E(g(y)\8). 
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Proof: Set G = Ω in Definition 3 . 5 9 . 

EXAMPLE 3 .71 : Suppose E(et\Xt) = 0. Then by Proposition 3 .70 , 

E(et) = E(E(et\Xt)) = 0. 

A more general result is the following. 

PROPOSITION 3 . 7 2 (Law of iterated expectations): Let S and Ή be 
σ-fields of sets in Ω with Ή CS, and suppose E(\y\) < ». Then 

E[E(y\S)\ft] = E(V\K). 

Proof: See Doob [ 1 9 5 3 , p. 3 7 ] . 

Proposition 3 . 7 0 is the special case of Proposition 3 . 7 2 in which Ή is 
set equal to the trivial σ-field { 0 , Ω}. 

With the law of iterated expectations available, it is straightforward 
to show that the conditional expectation has an optimal prediction 
property, in the sense that in predicting a random variable 2/ the 
prediction mean squared error of the conditional expectation of 2/ is 
smaller than that of any other predictor of 2/ measurable with respect 
to the same σ-field. 

THEOREM 3 . 7 3 : Let 2/ be a random variable with E(V2) < °° and 
let V= E(V\S) be S-measurable. Then for any other ^-measurable 
random variable V, E((V - V)2) < E((V - 2/) 2) . 

Proof: Adding and subtracting 2/ in (2/ — 2/) 2 gives 

E((V - 2/)
2
) = E((V -V + 2/ - 2 / )

2
) 

= E((y - y)2) + 2E((y - y)(y - y)) 
+ E((V - 2 / )

2
) . 

By the law of iterated expectations and Proposition 3 . 6 5 , 

E((y - 2/)(2/ - &)) = E[E((y - y)(y - y)\s)] 
= E[E(y -y\s)(y -y)]. 

But E(y - y\s) = o, so E((y - y)(y -y)) = o and 

E((y - y)2) = E((y - yf) + E((y - y)2\ 

and the result follows. 

This result provides us with another interpretation for the condi-
tional expectation. The conditional expectation of 2/ given S gives 
the minimum mean squared error prediction of 2/ based on a specified 
information set (σ-field) S. 
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With the next definition (from Stout [ 1 9 7 4 , p. 3 0 ] ) we will have 
sufficient background to define the concept of a martingale difference 
sequence. 

DEFINITION 3 .74 : Let {2/,} be a sequence of random scalars, and let 
{g,} be a sequence of σ-fields g , C g such that g ,_i C g , for all t (i.e., 
{g ,} is an increasing sequence of σ-fields). If 2/, is measurable with 
respect to g , , then {g ,} is said to be adapted to the sequence {2/,} and 
{2/,, g , } is called an adapted stochastic sequence. 

One way of generating an adapted stochastic sequence is to let g , 
be the σ-field generated by current and past 2/ , , i.e., g , = σ(. . . , 
2/ ,_! , 2/ 1). Then {g ,} is increasing and 2/, is always measurable with 
respect to g , . However, g , can contain more than just the present and 
past of 2/ , ; it can also contain the present and past of other random 
variables as well. For example, let 2/, = Zn, where Z't = (Zn, . . . , 
Ztq\ and let g , = σ(. . . , Zt-X, Zt). Then g , is again increasing and 
VT is again measurable with respect to g , , so {2/,, g , } is an adapted 
stochastic sequence. This is the situation most relevant to our pur-
poses. 

DEFINITION 3 .75 : Let {2/,, g , } be an adapted stochastic sequence. 
Then {2/,, g , } is a martingale difference sequence if and only if 

£ ' (2 / Jg /_ i ) = 0 for all / > 2 . 

EXAMPLE 3 .76 : (i) Let {2/,} be a sequence of i.i.d. random variables 
with E(yt) = 0 , and let g , = σ(. . . , 2 / ,_ , , 2/,). Then {2/,, g , } is a 
martingale difference sequence, (ii) (The Levy device) Let {2/,, 
g , } be any adapted stochastic sequence such that E\yt\ < » for all /. 
Then 

{yt-E(yt\%t_x\ g t } 

is a martingale difference sequence because 2/, — £ ' ( 2 / / | g i _ 1 ) is mea-
surable with respect to g , and, by linearity, 

E[yt - £ ( 2 / i | g i _ 1 ) | g , _ 1 ] = £ ( 2 / , | g , - i ) - E(yt\%t_x) = 0 . 

The device of Example 3 . 7 6 (ii) is useful in certain circumstances 
because it reduces the study of the behavior of an arbitrary sequence of 
random variables to the study of the behavior of a martingale differ-
ence sequence and a sequence of conditional expectations (Stout 
[ 1 9 7 4 , p. 33] ) . 
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The martingale difference assumption is often justified in eco-
nomics by the efficient markets theory or rational expectations theory, 
e.g., Samuelson [1965]. In these theories the random variable Vt is 
the price change of an asset or a commodity traded in a competitive 
market and %t is the σ-field generated by all current and past informa-
tion available to market participants, %t = σ(. . . , Zt_x, Z , ) , where 
Z , is a finite-dimensional vector of observable information, including 
information on 2/ , . A zero profit condition then ensures that 
£ ( 2 / , | 5 , _ i ) = 0. Note that if Qt = a(. . . , 2 / , _ , , Vt), then {2/„ 8t) is 
also an adapted stochastic sequence, and because 8t c g,, it follows 
from Proposition 3.72 that 

E(yt\Si_l) = E[E(yt\Zt_l)\St_l] = 0, 

so {2/ £, St) is also a martingale difference sequence. 
The martingale difference assumption often arises in a regression 

context in the following way. Suppose we have observations on a 
scalar y, (set ρ = 1 for now) that we are interested in explaining or 
forecasting on the basis of variables Zt as well as on the basis of the past 
values of y,. Let be the σ-field containing the information used to 
explain or forecast y,, i.e., = σ(. . . (Z,_,, y,_ 2)', (Z„ y^) ' ) . 
Then by Proposition 3.61, 

£(y,IS,-,) = s(. . . , (Ζ ,_ ΐ 5 ^_ 2 ^(Ζ, , γ , _οα 

where g is some function of current and past values of Zt and past 
values of y,. Let X, contain a finite number of current and lagged 
values of (Z,, y,_,), e.g., Χ; = ((Ζ,_ τ, y,_T_,)', . . . , (Z,, y,.,)') for 
some τ < °°. Economic theory is then often used in an attempt to 
justify the assumption that for some β0 < °°, 

g(. . . , ( Z i _ 1 , y f _ 2 r , ( Z i , y i _ 1 )
,
) = X ^ o . 

If this is legitimate, we then have 

£(y , IS ,- i) = X,A. 

Note that by definition, y, is measurable with respect to g,, so that 
{y,, 3 , } is an adapted stochastic sequence. Hence, by Levy's device, 
{y, — i^yjg,.!) , g,} is a martingale difference sequence. If we let 

€, = y , - X , Ä , 

and it is true that E(yt\%t-X) = Χ,&, then et = yt- E{yt\%t_x\ so {€„ 
3 , } is a martingale difference sequence. Of direct importance for least 
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squares estimation is the fact that {g ,} is also adapted to each sequence 
of cross products between regressors and errors {Xti€t}9 i = 1, . . . , 
k. It is then easily shown that {Xtiet9 g , } is also a martingale difference 
sequence, since by Proposition 3 . 6 5 

E(Xti€t\%t.l) = XiiE(€t\^i.l) = 0. 

A law of large numbers for martingale difference sequences is the 
following theorem. 

THEOREM 3 . 7 7 (Chow): Let {Z,, g , } be a martingale difference 
sequence. If for some r > 1, Σ7=1 (E\Zt\

2r)/tl+r < », then Zn

 J L J L
- 0 . 

Proof: See Stout [ 1 9 7 4 , p. 1 5 4 - 1 5 5 ] . 

Note the similarity of the present result to the Markov law of large 
numbers, Theorem 3 .7 . There the stronger assumption of indepen-
dence replaces the martingale difference assumption, whereas the 
required moment conditions are weaker with independence than they 
are here. A corollary analogous to Corollary 3.9 also holds. 

EXERCISE 3 .78 : Prove the following. Let {Z,, g , } be a martingale 
differencesequence such that E\Zt\

2r < A < » for some r > 1, and all 
t. T h e n Z „ ^ - 0 . 

Using this result and the law of large numbers for mixing sequences, 
we can state the following consistency result for the OLS estimator. 

THEOREM 3 .79 : Suppose 

(i) y = X& + €; 
(ii) {X,'} is a sequence of mixing random variables with φ(νή) of 

size r/(2r — 1 ), r > 1 , or a(m) of size r/(r — 1 ), r > 1 ; 
(iii) (a) Ε(Χ ί Α /€ ί Α|8/-ι) = 0 , where {g ,} is adapted to {Xthieth}9 

h = 1, . . . / = 1, . . . , k\ 
(b) E\Xthieth\

2r < A < » for some r > 1 and all h = 1, . . . , 
ρ, / = 1, . . . , / c , and t; 

(iv) (a) E\X2

hi\
r+ô < A < oo for some δ > 0 and all h = 1, . . . , 

ρ, i = 1, . . . , k, and t; 
(b) Mn = E(X'X/n) is uniformly positive definite. 

Then βη exists a.s. for all η sufficiently large, and βη β0. 
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Proof: To verify that the conditions of Theorem 2.18 hold, we note 
first that X'e/n = Σ£_, X'heh/n. where ΧΛ is the η X k matrix with rows 
Xth and eh is the η X 1 vector with elements eth. By assumption (iiia), 
{Xthi€th, 3 , } is a Martingale difference sequence. Because the moment 
conditions of Exercise 3.78 are satisfied by (iiib), we have n"1 

Σ,%Χ,Α,€ /Λ — 0 , Λ = 1, . . . , /? , /= 1, . . . XsoX'eln — Oby 
Proposition 2.11. 

Next, Proposition 3.50 ensures that {Χ,'Χ,} is a mixing sequence 
(given (ii)) that satisfies the conditions of Corollary 3.48 (given (iva)). 
It follows that X'X/η - Mn o, and M „ is O(l) (given (iva)) by 
Jensen's inequality. Hence the conditions of Theorem 2.18 are satis-
fied and the result follows. 

Note that the conditions placed on X, by (ii) and (iva) ensure that 
Χ' Χ/η — Mn 0 and that these conditions can be replaced by any 
other conditions that ensure the same conclusion. 

A result for the IV estimator can be obtained analogously. 

EXERCISE 3.80: Prove the following result. Given 

(i) y = X& + €; 
(ii) {( Zt, X,, et )} is a mixing sequence with φ(ιη) of size r/(2r— 1 ), 

r ^ 1 or ct(m) of size r/(r — 1 ), r > 1 ; 
(iii) (a) E(Zihieih\%t-l) = 0, where {g ,} is adapted to {Zthieth}, 

h= 1, . . . / = 1, . . . , /; 
(b) E\Zthie J 2 r < Δ < oo for some r> 1, and all h = 

1, . . . , ρ, / = 1, . . . , /, and t\ 
(iv) (a) E\ZthiXthj\

r+s < Δ < oo for some δ>0, and all h = 
1, . . . ,/?, / = 1, . . . , lj= 1, . . . , / c , and/; 

(b) Q„ = E(Z'Xjn) has uniformly full column rank; 
(c) P„ —P,,-^1—0, where {P„} is 0(1) and is uniformly 

positive definite. 

Then βη exists a.s. for all η sufficiently large and βη β0. 

As with results for the OLS estimator, (ii) and (iva) can be replaced 
by any other conditions that ensure Z'Xjn — Qn 0. Note that 
assumption (ii) is stronger than absolutely necessary here. Instead, it 
suffices that {(Z,, X,)'} is appropriately mixing. However, assump-
tion (ii) is needed later to ensure the consistency of estimated covar-
iance matrices. 
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C H A P T E R IV 

Asymptotic Normality 

In the classical linear model with fixed regressors and normally 
distributed i.i.d. errors, the least squares estimator ßn is distributed as 
multivariate normal with E(ßn) = ß0 and var ßn = o\ ( X ' X ) - 1 for any 
sample size n. This fact forms the basis for statistical tests of hypothe-
ses, based typically on /- and F-statistics. When the sample size is 
large, econometric estimators such as ßn have a distribution that is 
approximately normal under very general conditions, and this fact 
forms the basis for large sample statistical tests of hypotheses. In this 
chapter we study the tools used in determining the asymptotic distri-
bution of ßn, how this asymptotic distribution can be used to test 
hypotheses in large samples, and how asymptotic efficiency can be 
obtained. 

IV. 1 Convergence in Distribution 

The most fundamental concept is that of convergence in distribu-
tion. 

DEFINITION 4 . 1 : Let {bn} be a sequence of random finite-dimen-
sional vectors with joint distribution functions {Fn}. If Fn(z) —• F(z) 
as η —> °° for every continuity point z, where F is the distribution 
function of a random variable Z, then bn converges in distribution to 
the random variable Z, denoted bn —> Z. 
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Heuristically, the distribution of bn gets closer and closer to that of 
the random variable Z, so the distribution F can be used as an 
approximation to the distribution of bn. When bn —* Z, we also say 
that bn converges in law to Ζ (written bn —> Z), or that bn is asymptoti-
cally distributed as F, denoted bn ~ F. Then F is called the limiting 
distribution of bn. Note that the convergence specified by this defini-
tion is pointwise and only has to occur at points ζ where Fis continu-
ous. 

EXAMPLE 4 . 2 : Let {bn} be a sequence of i.i.d. random variables with 
distribution function F. Then (trivially) F is the limiting distribution 
ofbn. 

This illustrates the fact that convergence in distribution is a very 
weak convergence concept and by itself implies nothing about the 
convergence of the sequence of random variables. 

EXAMPLE 4 . 3 : Let {Z,} be i.i.d. random variables with mean μ and 
variance σ2 < ». Define bn = (Z„ - £(ZJ)/(var Z„) 1 / 2 = n~l/2 IJLi 
(Ζ, — μ)/σ. Then by the Lindeberg-Levy central limit theorem 
(Theorem 5 .2) , bn * JV(0, 1). 

In other words, the sample mean Z„, when standardized, has a 
distribution that approaches the standard normal distribution. This 
result holds under very general conditions on the sequence {Z,}, and 
the conditions under which this convergence occurs are studied at 
length in the next chapter. In this chapter, we simply assume that 
such general conditions are satisfied, so convergence in distribution is 
guaranteed. 

Convergence in distribution is meaningful even when the limiting 
distribution is that of a degenerate random variable. 

LEMMA 4 .4 : Suppose bn b (a constant). Then bn~ Fb, where Fb 

is the distribution function of a random variable Ζ that takes the value 
b with probability one (i.e., bn —> b). Also, if bn~ Fb9 then bn b. 

Proof: See Rao [ 1 9 7 3 , p. 120] . 

In other words, convergence in probability to a constant implies 
convergence in distribution to that constant. The converse is also 
true. 

A useful implication of convergence in distribution is the following 
lemma. 
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LEMMA 4 . 5 : lfb„^+ Z, then bn is O p(l). 

Proof: Recallthat^isO p(l)if,givenany J > 0 , l im P[\bn\>A] <δ 
for some Δ < ». Because 6„ Z, P [ |6„ | > Δ] — P[|Z| > Δ], pro-
vided (without loss of generality) that Δ and — Δ are continuity points 
of the distribution of Z. Hence lim P[\bn\ > Δ] = P[\Z\> A] < δ for 
any δ > 0 and Δ sufficiently large. 

This allows us to establish the next useful lemma. 

LEMMA 4 .6 (Product rule): Recall from Corollary 2 . 3 6 that 
if {An} is op(l) and {bn) is O p(l), then {Anbn} is o p(l) . Hence, if 
An 0 and bn Z, then 0 . 

In turn, this result is often used in conjunction with the following 
result, which is one of the most useful of those relating convergence in 
probability and convergence in distribution. 

LEMMA 4 .7 (Asymptotic equivalence): Let {an} and {bn} be 
sequences of random vectors. If an — bn^0 and bn —> Z, then 

— z . 

ΛΌΟ / · See Rao [ 1 9 7 3 , p. 123] . 

This result is helpful in situations in which we wish to find the 
asymptotic distribution of an but cannot easily do so directly. Often, 
however, it is easy to find a bn that has a known asymptotic distribution 
and that satisfies an — bn—+ 0 . Lemma 4 . 7 then ensures that an has the 
same limiting distribution as bn, and we say that an is "asymptotically 
equivalent" to bn. The joint use of Lemmas 4 . 6 and 4 . 7 is the key to 
the proof of the asymptotic normality results for the OLS and IV 
estimators. 

Another useful tool in the study of convergence in distribution is the 
characteristic function. 

DEFINITION 4 . 8 : Let Ζ be a k X 1 random vector with distribution 
function F. The characteristic function of Ζ is defined as f(k) = 
£(exp /A'Z), where i2 = — 1 and λ is a k X 1 real vector. 

EXAMPLE 4 . 9 : Let Ζ be a nonstochastic real number, Ζ = c. Then 
f(k) = £"(exp HZ) = £(exp iÀc) = exp iXc. 

EXAMPLE 4 . 1 0 : (i) Let Ζ ~ Ν(μ, ο2). Then f(À) = βχρ(/λμ— 
λ2σ2/2). (ii) Let Ζ ~ Ν(μ, V\ where μ is k X 1 and Fis kXk. Then 
Κλ) = εχχ>(ιλ'μ- λΎλ/2). 
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A useful table of characteristic functions is given by Lukacs [1970, p. 
18]. 

Because the characteristic function is the Fourier transformation of 
the distribution function, it has the property that any characteristic 
function uniquely determines a distribution function, as formally 
expressed by the next result. 

THEOREM 4.11 (Uniqueness theorem): Two distribution func-
tions are identical if and only if their characteristic functions are 
identical. 

Proof: See Lukacs [1974, p. 14]. 

Thus the behavior of a random variable can be studied either through 
its distribution function or its characteristic function, whichever is 
more convenient. 

EXAMPLE 4.12: The distribution of a linear transformation of a 
random variable is easily found using the characteristic function. 
Consider V =A'Z, where A ' is a q X k matrix. Let θ be q X 1. Then 
fy(6) = £(exp iPV) = £(exp iQ'A'Z) = £(exp zA'Z) = / z(A), defin-
ing Α = ΑΘ. Hence if Ζ ~ Ν(μ9 V\ fy(6) = fz(k) = exp(/A'// -
A' νλ/2) = βχρ(/0'Λ'μ - ΘΆ' VAO/l) so that V - N(A% A'VA) by the 
uniqueness theorem. 

Other useful facts regarding characteristic functions are the follow-
ing. 

PROPOSITION 4.13: Let V= aZ + b, a, beU. Then fy(X) = 
fz(aX) exp ikb. 

Proof: fy(À) = £(exp iky) = ^(exp ik(aZ + b)) = E(exp ikaZ · 
exp ikb) = £(exp ikaZ) exp ikb = fz(ka) exp ikb. 

PROPOSITION 4.14: Let V and Ζ be independent. Then if $ = 
y + Z f^(A)=/ y(A)/ 2(A). 

Proof: Uk) = E(expikS) = £(exp ik(V + Z)) = £(exp ikV 
exp ikZ) = E(exp ikV)E(txp ikZ) by independence. Hence f$(k) = 
/y(A)/z(A). 

PROPOSITION 4.15: If the kth moment μ* of a distribution function 
F exists, then the characteristic function / o f F can be differentiated k 
times andf(k )(0) = ikßk, whereß k ) is the kth derivative of / 
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Proof: This is an immediate corollary of Lukacs [ 1 9 7 0 , Corollary 3 

to Theorem 2 . 3 . 1 , p. 2 2 ] . 

EXAMPLE 4 . 1 6 : Suppose that Ζ ~ 7V(0, σ2). Then f'(0) = 0 , 

/ " ( 0 ) = - σ
2
, / ' " ( 0 ) = 0 , etc. 

The main result of use in studying convergence in distribution is the 
following. 

THEOREM 4 . 1 7 (Continuity theorem): Let {bn} be a sequence of 
random k X 1 vectors with characteristic functions {^(λ)}. If bn —• Z, 
then for every λ,/Λ(λ) — / ( Λ ) , where/U) = £(exp ιλ'Ζ). Further, if for 
every À,fn(À) —>/U) and fis continuous at λ = 0 , then bn Z, where 
f(X) = £(exp ik'Z). 

Proof: See Lukacs [ 1 9 7 0 , pp. 4 9 - 5 0 ] . 

This result essentially says that convergence in distribution is equiv-
alent to convergence of characteristic functions. The usefulness of the 
result is that often it is much easier to study the limiting behavior of 
characteristic functions than distribution functions. If the sequence 
of characteristic functions fn(X) converges to a characteristic function 
f(k) that is continuous at λ = 0 , this theorem guarantees that the 
limiting distribution F of bn is that corresponding to the characteristic 
function f(X). 

In all the cases that follow, the limiting distribution F will either be 
that of a degenerate random variable (following from convergence in 
probability to a constant) or be a multivariate normal distribution 
(following from an appropriate central limit theorem). In the latter 
case, it is often convenient to standardize the random variables so that 
the asymptotic distribution is unit multivariate normal. To do this we 
can use the matrix square root. 

EXERCISE 4 . 1 8 : Prove the following. Let Κ be a positive (semi) 
definite symmetric matrix. Then there exists a positive (semi) definite 
symmetric matrix square root Vx'2 such that the elements of Vl/2 are 
continuous functions of Fand F 1 / 2F 1 / 2 = V. (Hint: Express Fas 
V = Q'DQ where Q is an orthogonal matrix and D is diagonal with the 
eigenvalues of F along the diagonal.) 

EXERCISE 4 . 1 9 : Show that if Ζ ~ N(0, F), then V~l'2Z ~ 7V(0,1), 
provided Fis positive definite, where F~ 1 /2 = ( F 1 / 2) _ 1. 
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DEFINITION 4.20: Let {bn} be a sequence of random vectors. If 
there exists a symmetric matrix Vn positive definite for all η sufficiently 
large such that V~l/2bn ~ 7V(0, I ) , then V„ is called the asymptotic 
covariance matrix of bn, denoted avar bn. 

When var bn is finite, we can usually define Vn = var bn. Note that 
the behavior of bn is not restricted to require that Vn converge to any 
limit, although it may. Generally, however, we will at least require 
that the smallest eigenvalues of Vn and V~{ are uniformly bounded 
away from zero for all η sufficiently large. Even when var bn is not 
finite, the asymptotic covariance matrix can exist, although in such 
cases we cannot set Vn = var bn. 

EXAMPLE 4.21 : Define bn = Ζ + V/η where Ζ - N(0, 1 ) and 2/ is 
Cauchy, independent of Z. Then var bn is infinite for every n, but 
bn ~ N(0, 1 ) as a consequence of Lemma 4.7. Hence avar bn = 1. 

Given a sequence {V~x,2bn} that converges in distribution, we shall 
often be interested in the behavior of linear combinations of bn, say, 
{Anbn}9 where An9 like K~1 / 2, is not required to converge to a particular 
limit. We can use characteristic functions to study the behavior of 
these sequences by making use of the following corollary to the 
continuity theorem. 

COROLLARY 4.22: If λ Ε Rk and a sequence {/η(λ)} of characteristic 
functions converges to a characteristic function /(λ), then the conver-
gence is uniform in every compact subset of Uk. 

Proof: This is a straightforward extension of Lukacs [1970, p. 50]. 

This result says that in any compact subset of Uk the distance 
between/(A) and/(λ) does not depend on λ, but only on n. This fact is 
crucial to establishing the next result. 

LEMMA 4.23: Let {bn} be a sequence of random k X 1 vectors with 
characteristic functions {/η(λ)}, and suppose fn(X) —• f(X). If {An} is any 
sequence of k X q nonstochastic matrices such that {An} is O(l), then 
the sequence {A'nbn} has characteristic functions where θ is 
<? X 1, such that for every θ,/*(θ) ~/(Αηθ) — 0. 

Proof: From Example 4.12,/*(0) =/η(Αηθ). For fixed 0, λη = Αηθ 
takes values in a compact region of IR*, say, J\f09 for all η sufficiently 
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large because {An} is O(l). Because /„(λ)-+ /(λ), we have fjkj) — 
/(λ„) —> 0 uniformly for all λη in Νθ9 by Corollary 4.20. Hence for 
fixed θ,/η(Αηθ)-RAJS) =f*M-RAJS) - 0 for any 0(1) sequence 
{An}. Because θ is arbitrary, the result follows. 

The following consequence of this result is used many times below. 

COROLLARY 4.24: Let {bn} be a sequence of random k X 1 vectors 
such that V~l,2bn ~ N(0,1), where {Vn) and {V~1} are 0 ( 1 ). Let {An} 
be a 0 ( 1 ) sequence of (nonstochastic) k X q matrices with full column 
rank q for all η sufficiently large, uniformly in n. Then the sequence 
{A'nbn) is such that T-x/2A'nbn N(0,1), where Γ„ - A'nVnAn and {Γ„} 
and {Γ; 1} are O(l). 

Proof: {Γ„} is O(l) by Proposition 2.30. {Γ"1} is0(1) because {Γ„} 
is 0 ( 1 ) and det Γ„ > δ > 0 for all η sufficiently large, given the condi-
tions on {An) and {Vn}. Letf*{6) be the characteristic function of 
τ-χ*Α'ηΚ = r-v2A>nVj2V^2bn. Because {Γ^Α'^2} is O(l), 
Lemma 4.23 applies, i m p l y i n g / * ( ο ) - / ( Κ ^ Λ Γ " 1 / 2ο ) — 0, where 
f(À) = exp(— λ'λ/2), the limiting characteristic function of V~x,2bn. 
N o w / i K i ^ r - ^ ö ) = e x p ( - 0 T - > / 2 ^ ^ r - 1 / 2 0 / 2 ) = exp(-0'0 / 
2) by definition of Γ" 1 / 2. Hence f*(k) - exp(- θ'θ/2) — 0, so 
r-l/2A'nbn ~ 7V(0,1) by the continuity theorem 4.17. 

This result allows us to complete the proof of the following very 
general asymptotic normality result for the least squares estimator. 

THEOREM 4.25: Given 

(i) y = XÄ, + €; 
(ii) \-l/2n-l/2X'e ~N(0,1), where V„ = var(A2~1/2X'€) isO(l)and 

uniformly positive definite; 
(iii) X'X/rt - M„ 0, where M„ = E(X'X/n) is 0(1) and uni-

formly positive definite. 

Then Ό-χ/24η(βη- ßo) ~ N(091), where D„ = M ^ M " 1 . Suppose 
in addition that 

(iv) there exists V„ positive semidefinite and symmetric such that 
V„ - V n 0. Then D„ - D„ 0, where D„ ̂  (X'X/n)~l 

\„(X'X/n)-x. 

Proof: Because X'X/n — Mn 0 and M„ is finite and nonsingular 
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by (iii), (X'X/n) 1 and ßn exist in probability. Given (i) and the 
existence of (X'X/«)"1, 

Mßn-ßo) = (X'*/n)-ln-v2X'e. 

Hence, given (ii), 

Mßn-ßo) - M r « - 1 / 2X r € = [(X'X/«)"1 - M^ 1]Vy 2V" 1/ 2«" 1/ 2X'€, 

or, premultiplying by D~ 1 / 2, 

Ό-^Mßn-ßo) - D - ^ M - ' f l - ^ X ' e 

= D ; 1 / 2 [ ( x / x / « r 1 - M- 1 ]vy 2 v- 1 / 2 «- 1 / 2 x , €. 

The desired result will follow by applying the product rule lemma 4.6 
to the line immediately above, and the asymptotic equivalence lemma 
4.7 to the preceding line. Now V~ 1 / 2«- 1 / 2X'€ ~ N(091) by (ii); fur-
ther, D- ' /^X'X/«) - 1 - M-'Jvy 2 is o p( l) because D" 1/ 2 and \XJ2 are 
0 ( 1 ) given (ii) and (iii), and [(X' X/«)"1 - M"1] is op( 1 ) by Proposition 
2.30 given (ii). Hence, by Lemma 4.5, 

D" 1 / 2 Mßn - ßo) - V~x,2M~xn~x,2X'e ± 0. 

By Lemma 4.7, the asymptotic distribution of D ~ 1 / 2 Jn(ßn — ß0) is the 
same as that of D^ 1 / 2M~ 1A2~ 1 / 2X /€. We find the asymptotic distri-
bution of this random variable by applying Corollary 4.24, which 
immediately yields D - 1 / 2M - 1 « " 1 / 2X / € ~ N(0,1). 

Because (ii), (iii), and (iv) hold, D„ — D„ 0 as an immediate 
consequence of Proposition 2.30. 

The structure of this result is very straightforward. Given that the 
model is truly linear, we require only that (X'X/n) and (X'X/«)"1 are 
Op(\) and that «~ 1 / 2X'€ is asymptotically unit normal after standar-
dizing by the inverse square root of its asymptotic covariance matrix. 
The asymptotic covariance (dispersion) matrix of Jn(ßn — ß0) is D„, 
which can be consistently estimated by D„. Note that this result 
allows the regressors to be stochastic and imposes no restriction on the 
serial correlation or heteroskedasticity of except that needed to 
ensure that (ii) holds. As we shall see in the next chapter, only mild 
restrictions are imposed in guaranteeing (ii). 

In special cases, it may be known that V„ has a special form. For 
example, when et is an i.i.d. scalar with E(et) = 0, E(e2) = σ 2 , and X, 
nonstochastic, then V„ = <72X'X/«. Finding a consistent estimator 
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for \ n then requires no more than finding a consistent estimator for 

In more general cases considered below it is often possible to write 

V„ = E(X'6€'X/n) = Ε(Χ'ΩηΧ/η). 

Finding a consistent estimator for V„ in these cases is made easier by 
the knowledge of the structure of Ω„. However, even when Ω Λ is 
unknown, it turns out that consistent estimators for \ n are generally 
available. The conditions under which V„ can be consistently esti-
mated are treated in Chapter VI. 

A result analogous to Theorem 4 .25 is available for instrumental 
variables estimators. Because the proof follows that of Theorem 4 .25 
very closely, proof of the following result is left as an exercise. 

EXERCISE 4 .26: Prove the following result. Given 

(i) y = XÄ, + €; 
(ii) \-x'2n-xllZ'e -N(0,1), where V„ = var(«" 1 / 2Z /€) is 0 ( 1 ) and 

uniformly positive definite; 
(iii) (a) Z'Xjn - Q „ Λ 0, where Q„ = E(Z'X/n) is 0(1) with 

uniformly full column rank; 
(b) There exists P„ such that P„ - P„ 0 and P„ is 0 ( 1 ) and 

uniformly positive definite. 

Then Ό~ι'2Μβη - ßo) ~ N(091), where 

D„ - ( Q i P . Q J ^ Q ^ P ^ P . Q ^ Q ^ P . O J 1 . 

Suppose in addition that 

(iv) There exists \ n positive semidefinite and symmetric such that 

Then D„ — D„ —• 0, where 

D w = ( X ' Z Î \ Z ' X / r t 2 ) - H X ' Z / ^ ^ 

IV.2 Hypothesis Testing 

A direct and very important use of the asymptotic normality of a 
given estimator is in hypothesis testing. Often, hypotheses of interest 
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can be expressed in terms of linear combinations of the parameters as 

RÂ, = r, 

{qXkXkXl) (qX 1) 

where R and r are a matrix and a vector of known elements that, 
through RßQ = r, specify the hypotheses of interest. For example, if 
the hypothesis is that the elements of ßQ sum to unity, R = [ 1, 1, . . . , 
l ] a n d r = 1. 

Several different approaches can be taken in computing a statistic to 
test the null hypothesis RßQ = r versus the alternative RßQ Φ r. The 
methods that we consider here involve the use of Wald, Lagrange 
multiplier, and quasi-likelihood ratio statistics. 

Although the approaches to forming the test statistics differ, the way 
that we determine their asymptotic distributions is the same. In each 
case we exploit an underlying asymptotic normality property to obtain 
a statistic distributed asymptotically as χ 2 . To do this we use the 
following results. 

LEMMA 4 . 2 7 : Let g: R
k
 —> U

l
 be continuous on R

k
 and let bn Z , a 

k X 1 random vector. Then g(bn) g(Z). 

Proof: See Rao [ 1 9 7 3 , p. 124] . 

COROLLARY 4 . 2 8 : Let V~l/2bn ~ N(0, lk). Then b'nV-xbn = 

Proof: By hypothesis, V~l/2bn-^ Z ~ N(0,lk). The function 
g(z)= z'z is continuous on Rk. Hence b'nV~lbn = g(V~x,2bn) —> 
g{Z) = Z'Z~x

2

k. 

Typically, Vn will be unknown, but there will be a consistent estima-
tor Vn such that Vn — Vn 0. To replace Vn in Corollary 4 . 2 8 with 
Vn, we use the following result. 

LEMMA 4 . 2 9 : Let g: R
k
 — Rf be continuous on R

k
. If an - bn 0 

and b„ ^ Z, then g(an) - g(bn) 0 and g(an) g(Z). 

Proof: Rao [ 1 9 7 3 , p. 124] proves that g(an) - g(bn) 0 . 

That g(an) g(Z) follows from Lemmas 4 .7 and 4 . 2 7 . 

Now we can prove the result that is the basis for finding the 
asymptotic distribution of the Wald, Lagrange multiplier, and quasi-
likelihood ratio tests. 



IV.2 Hypothesis Testing 71 

THEOREM 4.30: Let V~x,2bn ~ N(0,1^), and suppose there exists Vn 

positive semidefinite and symmetric such that Vn — Vn —> 0, where Vn 

is 0(1), and for all η sufficiently large, d e t F „ > < î > 0 . Then 

Proof: We apply Lemma 4.29. Consider V~x,2bn — V^i/2bn, where 
V~x/2 exists in probability for all η sufficiently large. Now V~x,2bn — 
V-Xl% = (V~X/2VXJ2 - l)V~x/2bn. By hypothesis, V~x,2bn ± N(0, I*), 
and V~x,2V\j2 — 1-^0 by Proposition 2.30. It follows from the 
product rule lemma 4.6 that V~xl2bn — V~x,2bn —> 0. Because 
V~l/2bn-^Z-N(0, l k \ it follows from Lemma 4.29 that 

The Wald statistic allows the simplest analysis, although it may or 
may not be the easiest statistic to compute in a given situation. The 
motivation for the Wald statistic is that when the nuU hypothesis is 
correct, Rßn should be close to RßQ = r, so a value of Rßn — r far from 
zero is evidence against the null hypothesis. To tell how far from zero 
Rßn — r must be before we reject the null hypothesis, we need to 
determine its asymptotic distribution. 

THEOREM 4.31 (Wald test): Let the conditions of Theorem 4.25 
hold and let rank R = q ^ k. Then under H0 : RßQ = r, 

(i) Γ~χ/2ΜΚβη - r) ~ N(0,I), where 

Γ„ s RD„R' = R M - ^ M - ' R ' . 

(ii) the Wald statistic Wn = n(Rßn - r)T-x(Rßn - r) ~ χ% where 

f „ s RD„R' = R(X'X/n)-xYn(X'X/n)-xR'. 

Proof: (i) Under H0, Rßn - r = R(ßn - ßö), so Γ^2Μ^βη - r) = 
r - 1 / 2R D - 1 / 2D - 1 / 2^ ( ß , - ß0). It follows from Corollary 4.24 that 
γ-χ/24η(Κβη - r) ~ N(0,1), jii) Because D„ - D„ 0 from Theorem 
4.25, it follows that f „ — Γη —> 0 by Proposition 2.30. Given the re-
sult in (i), (ii) follows from Theorem 4.30. 

This version of the Wald statistic is useful regardless of the presence 
of heteroskedasticity or serial correlation in the error terms because a 
consistent estimator (V„) for \ n is used in computing f„ . In the 
special case when V„ can be consistently estimated by (7 2(X'X/«), the 
Wald test has the form 

<Wn = n(Rßn - r)'[R(X'X/n)-xR']~x(Rßn - r)/<7 2, 
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which is simply q times the standard F-statistic for testing the hypoth-
esis RßQ = r. The validity of the asymptotic χ \ distribution for this 
statistic depends crucially on the consistency of \ „ = ôl(X'X/n) for 
V„; if this \ n is not consistent for \ n , the asymptotic distribution of 
this form for Wn is not χ \ in general. 

The Wald statistic is most convenient in situations in which the 
restrictions RßQ = r are not easy to impose in estimating ß Q . When 
these restrictions are easily imposed (say, RßQ = r specifies that the last 
element of ß Q is zero), the Lagrange multiplier statistic is more easily 
computed. 

The motivation for the Lagrange multiplier statistic is that a con-
strained least squares estimator can be obtained by solving the prob-
lem 

which is equivalent to finding the saddle point of the Lagrangian 

The Lagrange multipliers λ can be thought of as giving the shadow 
price of the constraint and should therefore be small when the con-
straint is valid and large otherwise. (See Engle [1981] for a general 
discussion.) The Lagrange multiplier test can be thought of as testing 
the hypothesis that A = 0. 

The-first order conditions are 

To solve for the estimate of the Lagrange multiplier, premultiply the 
first equation by R(X'X/n)~

l and set Rß = r. This yields 

where ß n is the constrained least squares estimator (which automati-
cally satisfies Rßn = r). In this form, ln is simply a nonsingular 
transformation of Rßn — r. This allows the following result to be 
proved very simply. 

THEOREM 4.32 (Lagrange multiplier test): Let the conditions of 
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Theorem 4.25 hold and let rank R = q < k. Then under H0 : RßQ = r, 

(i) A-l/2Jn'Xn ~ iV(0,1), where 

A ^ ^ R M ^ R T T ^ R M - ' R ' ) - 1 

and Γ„ is as defined in Theorem 4.31. 
(ii) The Lagrange multiplier statistic £Mn = ηλ'ηΑ~ιλη ~ χ% 

where 

A„ = 4 ( R ( X , X / « ) - 1 R / r 1 R ( X / X / « ) - 1 V w( X , X / « r 1 R r 

X(R(X'X/n)-lRTl 

and V„ is computed from the constrained regression such that V„ — 
V„ -^Ounder H0. 

Proof: (i) Consider the difference 

A~x,2fnln - 2A" 1/ 2(RM - 1R0 - 1^(R)S„ - r) 

= 2A- 1/ 2[(R(X'X/«)-'R')- 1 - ( R M - ^ O ^ i r y T - ^ ^ R ^ - r). 

From Theorem 4.31, r ~ 1 / 2( R ^ - r) ~ N(0,1). Because (X'X/w) -
M n 0, it follows from Proposition 2.30 and the fact that Λ~ 1 / 2 and 
Γ" 1 / 2 are O(l) that A - 1 / 2[ ( R ( X , X / « r 1 R , r 1 - ( R M ^ R T T i 7 2 — 0. 
Hence by the produce rule lemma 4.6, 

Α~ι/2\Γήλη - 2 A - 1 / 2 ( R M - 1 R 0 " 1 ^ ( R ^ - r) ^ 0. 

It follows from Lemma 4.7 that A~l/2yfnln has the same asymptotic 
distribution as 2 A - 1 / 2( R M - 1 R , ) ~ 1 V « ( R # I - r). It follows immedi-
ately from Corollary 4.24 that 2A" 1 / 2(RM- 1RT 1V«(R#, - Γ) ~ 
N(0,1); hence A~i/2JnX ~ 7V(0,1). 

ä (ii) Because \ n - \ n 0 by hypothesis and (X'X/n) - Mn 0, 
An — An 0 by Proposition 2.30. Given the result in (i), (ii) follows 
from Theorem 4.30. 

Note that the Wald and Lagrange multiplier statistics would be 
identical if V„ were used in place of V„. This suggests that the two 
statistics should be asymptotically equivalent. 

EXERCISE 4.33: Prove that under the conditions of Theorems 4.31 
and 4.32, Wn-£Mn-^0. 

Although the fact that X„ is a linear combination ofRßn — r simpli-
fies the proof of Theorem 4.32, the whole point of using the Lagrange 



7 4 IV. Asymptotic Normality 

multiplier statistic is to avoid computing ßn and to compute only the 
simpler ßn. Computation of ßn is particularly simple when the model 
is y = Xj/?i + X2ß2 + € and H0 specifies that ß2 (a q X 1 vector) is 
zero. Then 

R = [ 0 : 1 ] , r = 0, 
(qXk-q) (qXq) (qX 1) 

and # = (ßin, 0) where/flfl = (XJX.r'XJy. 

EXERCISE 4 . 3 4 : Define e = y — XxßXn. Show that under 
Ηο:β2 = 0, 

λη = 2X'2(l - Χ,ίΧίΧ,^ΧΟέ /Λ 

= 2X'2ë/n. 

(Hint: Rßn-r = R(X'X/n)-lX'(y - Xßn)/n). 

By applying the particular form of R to the result of Theorem 
4.32(H) , we obtain 

When V„ can be consistently estimated by V„ = cr2(X'X/«), where 
σ2

η = €'€/«, the £Mn statistic simplifies even further. 

EXERCISE 4 . 3 5 : If σ2

η(Χ'Χ/η)- V„-^0 and β2 = 0, show that 
£Mn = në'X(X'X)-xX'ël{ë'ii\ which is η times the simple R2 of the 
regression of € on X. 

The result of this exercise implies a very simple procedure for testing 
β2 = 0 when V„ = o2

0Mn. First, regress y on X, and form the con-
strained residuals €. Then regress € on X. The product of the sample 
size η and the simple R2 (i.e., without adjustment for the presence of a 
constant in the regression) from this regression is the £Mn test statistic, 
which has the χ\ distribution asymptotically. As Engle [1981] 
showed, many interesting diagnostic statistics can be computed in this 
way. 

When the errors et are scalar i.i.d. 7V(0, σ 2 ) random variables, the 
OLS estimator is also the maximum likelihood estimator (MLE) 
because βη solves the problem 

max £(β, σ\ y) = exp j^- η log 42π - η log σ - \ (y, - Xtß)2la2 j , 

where £(β, a\ y) is the sample likelihood based on the normality 
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assumption. When et is not i.i.d. Λ^Ο, σ 2), βη is said to be a quasi-
maximum likelihood estimator (QMLE). 

When βη is the MLE, hypothesis tests can be based on the log-likeli-
hood ratio 

£Jin = log[£(ßn, cf„; y)/£(ßn, σ„; y)], 

where σ2

η = n~l Σ?«, (yt — Xtßn)
2 as before and fi„, än solves 

max £(β, σ; y) s.t. Rß = r. 
β,σ 

It is easy to show that βη is the constrained OLS estimator and a2 = 
ë'ë/n as before. The likelihood ratio is nonnegative and always less 
than or equal to 1. Simple algebra yields 

£Kn = (n/2) \og(Ô2Ja2

n). 

Because σ2

η = σ2

η + (βη - βη)'(Χ'Χ/η)(βη - βη) (verify this), 

£Κ = -(η/2) log[l + (βη-βηΥ(Χ'Χ/η)(βη-βη)/σ
2

η]. 

To find the asymptotic distribution of this statistic, we make use of the 
mean value theorem of calculus. 

THEOREM 4 . 3 6 (Mean value theorem): Let s: Uk
 —> R

1 be defined 
on an open convex set 0 c R f c such that s is continuously differentiable 
on θ with gradient Vs. Then for any points θ and 9 0 £ θ there exists θ 
on the segment connecting θ and θ0 such that s(6) = s(0o) + Vs(S) 
(θ-θ0). 

Proof: See Bartle [ 1 9 7 6 , p. 3 6 5 ] . 

For the present application, we choose s(6) = log( 1 + Θ). If we also 
choose θ0 = 0 , we have s(0) = (log 1 ) + ( 1 / 1 + θ) · θ = ( 1 / 1 + θ) · θ, 
where θ lies between θ and zero. Let θη = (βη - βη)'(Χ'Χ/ή)(βη -
βη)/σ

2

η so that under H0,\θη\ <\θη\-S 0 ; hence θη 0 . Applying the 
mean value theorem now gives 

£üin = ~(n/2)(\ + θηΤ\βη -ßn)'(X'X/n)(ßn -ßn)/ö
2

n. 

Because (1 + θη)~
ι 1, it follows from Lemma 4 . 6 that 

-2£<Rn - η(βη-βη)\Χ'Χ/η)(βη-βη)/σ
2

η ± 0 , 

provided the second term has a limiting distribution. Now 

ßn-ßn = (X'X/nrRmX'X/nVRTW» ~ r). 
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Thus 

-2£Kn - n(Rßn - r J ' I R i X ' W ' R T i R Ä - r)/â2

n ± 0. 

This second term is the Wald statistic formed with \ n = σ2

η(Χ' Χ/ή), so 
— 2£ftn is asymptotically equivalent to the Wald statistic and has the 
X2

q distribution asymptotically, provided ô2

n(X'Xlri) is a consistent 
estimator for V„. If this is not true, then — 2£Jin does not in general 
have the χ\ distribution asymptotically. It does have a limiting 
distribution, but not a simple one that has been tabulated or is easily 
computable. Note that it is not violation of the normality assumption 
per se, but the failure of V n to equal a2

QMn that results in — 2£*ΡΙη not 
having the χ\ distribution asymptotically. 

The formal statement of the result for the £Jin statistic is the 
following. 

THEOREM 4 . 37 (Likelihood ratio test): Let the conditions of 
Theorem 4 .25 hold, let rank R = q < k, and let σ2

η(Χ'Χ/η) - \ n 0. 
Then under H0:Rß0 = r, -2£ftn ~ χ\. 

Proof: Set V„ in Theorem 4.31 to V„ = σ2

η(Χ' X/n). Then from the 
argument preceding the theorem above — 2£cRn — Wn 0. Because 
Wn ~ χ2

ψ it follows from Lemma 4.7 that —2£Jîn ~ x2

q. 

The mean value theorem just introduced provides a convenient way 
to find the asymptotic distribution of statistics used to test nonlinear 
hypotheses. In general, nonlinear hypotheses can be conveniently 
represented as 

# 0 : s ( A > ) = 0, 

where s: Uk —• Uq is a continuously differentiable function of β. 

EXAMPLE 4 .38: Suppose y = + Χ2β2 + X 3 & + €, where X!, 
X 2 , and X 3 are η X 1 and βχ, β2, and β3 are scalars. Further, suppose 
we hypothesize that β3 = βχβ2. Then s(β0) =β3- βχβ2 = 0 expresses 
the null hypothesis. 

Just as with linear restrictions, we can construct a Wald test based on 
the asymptotic distribution of s(ßn); we can construct a Lagrange 
multiplier test based on the Lagrange multipliers derived from mini-
mizing the least squares (or other estimation) objective function sub-
ject to the constraint; or we can form a log-likelihood ratio. 
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To illustrate the approach, consider the Wald test based on s(ßn). 
As before, a value of s(ßn ) far from zero is evidence against H0. To tell 
how far s(ßn) must be from zero to reject H0, we need to determine its 
asymptotic distribution. This is provided by the next result. 

THEOREM 4.39 (Wald test): Let the conditions of Theorem 4.25 
hold and let rank Vs(/?Q) = q<k. Then under H0:s(ßo) = 0, 

(i) r-l/2Sn s(ßn) ~ 7V(0,1), where 

rn^Vs(ß0)OnVs(ß0)\ 

(ii) The Wald statistic Wn = η s(ßnyf-ls(ßn) ~ χ% where 

f n = Vs(&)D„Vs(&)' 

= Vs(& )(X' Χ/ηΓ V„(X' X/«)"1 Vs(&) '. 

Proof: (i) Because s(ß) is a vector function, we apply the mean value 
theorem to each element s,-(jS), / = 1, . . . , q, 

s/(Ä) = s/(A) + vsAßftk - A). 

where is a & X 1 vector lying on the segment connecting p„ and ß0. 
The superscript (/') reflects the fact that the mean value may be 
different for each element s,(/?) of s(ß). 

Under H0, s,(Ä,) = 0, i = 1, . . . , q, so 

^si(ß„) = Vsi(ßy)Mßn-ß0)-

This suggests considering the difference 

^ s , ( Â ) - V s , ( j 8 0 ) ^ ( Â - / ? 0 ) 

= ( V s , ( ^ > ) - VSi(ß0))Mßn - β») 

= (vs,.(fl |>) - ν8ι.(Α,))θλ/2ο-,/2^(Α, - β0). 

By Theorem 4.25, O-l/2Jn(ßn - ßo) ~ 1). Because ß„ it 
follows that jî 0, so Vs,(/f<J>) - Vs,(Ä>) 0 by Proposition 2.27. 
Because Dj / 2 is 0 ( 1 ), we have (Vs,(#i>) - Vs,()?0))Dy2 0. It follows 
from Lemma 4.6 that 

Vnŝ Ä.) - VSi(Ä,)Vn(Ä - Ä.) ̂  0, ι = 1, . . . , q. 
In vector form this becomes 

V^S(Â) - Vs(ß0)Mßn - ßo) Λ 0, 
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and because Γ „ 1 / 2 is O(l), 

Corollary 4.24 immediately yields r-l/2Vs(ß0)Jh(ßn ~ A>) ~ N(09I), 
so by Lemma 4.7, r~l/2Jns(ßn) ~ N(0,1). 

(ii) Because D„— D„-^0 from Theorem 4.25 and Vs(ßn) — 
Vs(/?0) 0 by Proposition 2.27, f „ — Γ„ 0 by Proposition 2.30. 
Given the result in (i), (ii) follows from Theorem 4.30. 

Note the similiarity of this result to Theorem 4.31 which gives the 
Wald test for the linear hypothesis RßQ = r. In the present context, 
s(/?0) plays the role of Rß0 — r, whereas Vs(/?0) plays the role of R in 
computing the covariance matrix. 

EXERCISE 4.40: Write down the Wald statistic for testing the hy-
pothesis of Example 4.38. 

EXERCISE 4.41: Give the Lagrange multiplier statistic for testing 
Ho: S(Â>) = 0 versus : s(/?G) Φ 0, and derive its limiting distribution 
under the conditions of Theorem 4.25. 

EXERCISE 4.42: Give the Wald and Lagrange multiplier statistics 
for testing the hypotheses Rß0 = r and s(ß0) = 0 on the basis of the IV 
estimator ß n and derive their limiting distributions under the condi-
tions of Exercise 4.26. 

IV. 3 Asymptotic Efficiency 

Given a class of estimators (e.g., the class of instrumental variables 
estimators), it is desirable to choose that member of the class that has 
the smallest asymptotic covariance matrix (assuming that this 
member exists and can be computed). The reason for this is that such 
estimators are obviously more precise, and in general allow construc-
tion of more powerful test statistics. In what follows, we shall abuse 
notation slightly and write avar ß n instead of avar Jn(ßn — ßQ). 

DEFINITION 4.43: Given two consistent asymptotically normal es-
timators ß„ and/?*, β* is said to be asymptotically efficient relative toβη 

if and only if for all η sufficiently large, avar βη — avar β* is positive 
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semidefinite for any ßQ. Given a class of estimators, a member of that 
class is asymptotically efficient within the class if and only if it is 
asymptotically efficient relative to every other member of its class. 

The estimators we consider are the instrumental variables estimators 

& = ( X ' Z ^ Z ' X ) ' X ' Z ^ Z ' y . 

We saw in Exercise 4.26 that the asymptotic covariance matrix of these 
estimators is 

D„ = (QiP^QJ^Q^P .V .P .Q^Q^P.QJ 1 

We now consider the problem of how the IV estimator can be con-
structed so as to make D^as small as possible. 

We first consider how P„ can be optimally chosen. Until now, we 
have let Pn be any positive definite matrix. It turns out, however, that 
by choosing P„ = V " 1 , one obtains an asymptotically efficient estima-
tor for the class of IV estimators with given instrumental variables Z. 
To prove this, we make use of the following proposition. 

PROPOSITION 4.44: Let A and Β be positive definite matrices of 
order k. Then A — Β is positive semidefinite if and only if B - 1 — A - 1 

is positive semidefinite. 

Proof: This follows from Goldberger [1964, Theorem 1.7.21, p. 38]. 

The usefulness of this result hinges on the fact that in the cases of 
interest to us it will often be much easier to determine whether B - 1 — 
A - 1 is positive semidefinite than to examine the positive definiteness of 
A — Β directly. 

PROPOSITION 4.45: Given instrumental variables Ζ and the condi-
tions of Exercise 4.26, the choice Ρ„ = V " 1 gives the IV estimator 

« » ( X ' Z V - ' Z ' X ^ X ' Z V - ' Z ' y , 

which is asymptotically efficient within the class 

Α-ίΧ'ΖΡ,Ζ'ΧΓ'Χ'ΖΡ,,Ζ'γ. 

Proof: From Exercise 4.26, we have 

avarj»; = (Q;V-'Q n) - ' . 

From Proposition 4.44, avar ßn — avar β* is p.s.d. if and only if (avar 
ßn)~l ~ (avarβη)~

χ is p.s.d. Now for all η sufficiently large, 
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( a v a r ^ ^ - i a v a r ^ r 1 

= QnV-n

l/2d 

= Q W d - Gn(G'nGn)-
x
Gn)\-^Qn, 

where G „ = V n

1 / 2P„Q„. This is a quadratic form in an idempotent 
matrix and is therefore p.s.d. The result follows. 

EXERCISE 4.46: Given instrumental variables X, suppose that V ~
1 /2 

Σ?=ι X,'€, ~ N(0,I), where \ n = σ 2Μ„. Show that the asymptotically 
efficient estimator is βη, under the conditions of Theorem 4.25. 

EXERCISE 4.47: Given instrumental variables Z , suppose that V ~
1 /2 

Σ?=1 Z, '€, ~ 7V(0,1), where V„ = a 2L„ and L„ = £ ( Ζ ' Ζ/Λ ) . Show that 
the asymptotically efficient estimator is the two-stage least squares 
estimator 

under the conditions of Exercise 4.26. 

Note that the value of σ 2 plays no role in either Exercise 4.46 or 
Exercise 4.47 as long as it is finite. In what follows, we shall simply 
ignore σ 2, and proceed as if a\ = 1. 

Proposition 4.45 provides the optimal estimator for given instru-
mental variables Z . The next result shows that whenever additional 
instrumental variables satisfying the conditions of Exercise 4.26 are 
available, the efficiency of the IV estimator can potentially be im-
proved by their use. To establish this, we make use of the formula for 
the inverse of a partitioned matrix, which we now state for conve-
nience. 

PROPOSITION 4.48: Define the k X k nonsingular symmetric ma-
trix 

where Β is k{ X kx, C is k2 X kx and D is k2 X k2. Then, defining Ε = 
D - C B ' C , 

ß2SLS = (X 'ZtZ'Zr 'Z 'Xr 'X'ZiZ 'Zr 'Z 'y 
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Proof: See Goldberger [1964, p. 27]. 

PROPOSITION 4.49: Partition Ζ as Ζ = (Z,, Z 2) and suppose the 
conditions of Exercise 4.26 hold for both Z, and Z. Define V,„ = 
£(Ziee'Z,//i), β„ = ( X ' Z . V r ^ X r ' X ' Z . V r J Z i y , and /?„* = 
( X ' Z V - ' Z ' X r ' X ' Z V - ' Z ' y . 

Then avar p„ — avar jSJ is a positive semidefinite matrix for all η 
sufficiently large. 

Proof: Partition Q„ as = (Q\n, Q2„), where Q,„ = E(Z[X/n), 
Q2„ = E(Z'2X/n), and partition V„ as 

where E„ = V 2„ — V 2 1 nV,,}V ,2 , I. From Exercise 4.26, we have 

(avar (avar &) - ' 

= Q ; V - ' Q n - Q i „ V 7 „ ' Q l n 

= [Q'ln, Q 2 J V - ' [ q î „ , Q'2ny - Qî nvr n'Q. n 

~~ Q 2 « E „ 1 V 2 1„ V 1 „
1 Q 1 „ — Q i „ V 1 „

1 V 1 2 , î E „ 1 Q 2 r t 

+ Q 2 n E - , Q 2 n - Q ; n v r n ' Q i n 

= QinV 1„
1V 12„E , J

1V 2 1V 1„
1Q 1„ — Q 2 , i E „ 1 V 2 1„ V 1 , } Q 1 / J 

- Q i „ V r n ' V 1 2„ E - ' Q 2 n + Q 2 „ E ; ' Q 2 n 

= [ Q l « ^ \η^ \ 2 η ~~ Q 2 « ] E „ 1 [ V 2 1, I V 1 , J Q 1 , J — Q 2 „ ] . 

Because E"1 is a symmetric positive definite matrix (why?), we can 
write Ε"1 = E - 1 / 2E " 1 / 2, so that 

( a v a r ^ ^ - i a v a r Ä , ) - 1 

= [Q\ny^nn - Q5 n]E-^Ei'/ 2[V 2 l l lvr» lQii, - Q 2 J . 

The partitioned inverse formula gives 

- 1 = V l n

!(I + V1 2„E„1V2 1„V1„
1) V J V ^ E , , 1 

η — F _ 1 V V - 1 F - 1 

avarÄ, = ( Q ^ V ^ Q ^ r 1 , 

a v a r ^ = (Q;V;'Q n) - ' . 

We apply Proposition 4.44 and consider 
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Because this is the product of ajnatrix and its transpose, we immedi-
ately have (avarß*)~l — (avar ßn)~

l is p.s.d. so that the result follows 
from Proposition 4 . 4 4 . 

This result states essentially that the asymptotic precision of the IV 
estimator cannot be worsened by including additional instrumental 
variables. We can be more specific, however, and specify situations in 
which avar ßn = avar /?*, so that nothing is gained by adding an extra 
instrumental variable. 

PROPOSITION 4 . 5 0 : Let the conditions of Proposition 4 . 4 9 hold. 
Then avar ßn = avar /?* if and only if 

E(X'Zx/n)E(Z'xee'Zx/n)-{E(Z'xee'Z2/n) - E(X'Z2/n) = 0 . 

Proof: Immediate from the final line of the proof of Proposition 
4 . 4 9 . 

To interpet this condition, consider the special case in which 
E(Z'ee'Z/n) = EiZ'Zjn). In this case the difference in Proposition 
4 . 5 0 can be consistently estimated by 

n-\X'Zx(Z\ZxY
xZ\Z2 - XfZ2) = η-χΧ(Ζχ(Ζ\Ζχ)-

χΖ\ - I)Z 2. 

This quantity is recognizable as the cross product of Z 2 and the 
projection of X onto the space orthogonal to that spanned by the 
columns of Zx. If we write X = X(ZX(Z\Zx)~

lZ\ — I), the difference 
in Proposition 4 . 5 0 is consistently estimated by X'Z 2//?, so that 
avar βη = avar β* if and only if X'Z2/n —• 0, which can be interpreted 
as saying that adding Z 2 to the list of instrumental variables is of no use 
if it is uncorrected with X, the matrix of residuals of the regression of X 
on Zj. 

One of the interesting consequences of Propositions 4 . 4 9 and 4 . 5 0 is 
that in the presence of heteroskedasticity or serial correlation of 
unknown form, there may exist estimators for the linear model more 
efficient than OLS. This result has been obtained independently by 
Cragg [ 1 9 8 3 ] and Chamberlain [ 1 9 8 2 ] . To construct these estimators, 
it is necessary to find additional instrumental variables uncorrelated 
with If E(€,|X,) = 0 , such instrumental variables are easily found, 
because any measurable function of Xt will be uncorrelated with et. 
Hence, we can set Ζ, = (X,, z(X,)), where z(X,) is a 1 X / — k vector of 
measurable functions of X,. 

EXAMPLE 4 . 5 1 : Let ρ = k = 1 so y, = Xtß0 + where y,, X, and et 
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are scalars. Suppose that X, is nonstochastic, and for convenience 
suppose M„ = n~x 1{L, X 2 —• 1. Let et be independent heterogen-
eously distributed such that E(et) = 0 and E(ej) = a]. Further, sup-
pose X, > δ > 0 for all t, and take z(X,) = X^1 so that Z, = (X„ X"1). 
We consider βη = (X'X)->X'y and β* = (ΧΖ\-χΖΧ)χΧΖ\-χΖγ9 

and suppose that sufficient other assumptions guarantee that the result 
of Exercise 4.26 holds for both estimators. 

By Propositions 4.49 and 4.50, it follows that avar βη > avar β* if 
and only if 

( / r ' J j <χ?Χ , 2) _ 1(κ- ' Jj σή - 1 Φ 0 

or equivalently, if and only if n~x XJLi o2X2

t Φ n~x X{Lj σ 2. This would 
certainly occur if at = X"1. (Verify this using Jensen's inequality.) 

It also follows from Propositions 4.49 and 4.50 that when \ n Φ L„, 
there may exist estimators more efficient than two-stage least squares. 
If / > / c , additional instrumental variables are not necessarily required 
to improve efficiency over 2SLS (see White [ 1982]); but as the result of 
Proposition 4.49 indicates, additional instrumental variables (e.g., 
functions of Zt) can nevertheless generate further improvements. 

This suggests that in the presence of serial correlation or heteroske-
dasticity of unknown form there may be no limit to the number of 
instrumental variables available for improving the efficiency of the 
estimator. The situation is different in the absence of heteroskedasti-
city or serial correlation, however. In this case it is possible to specify 
precisely a finite set of instrumental variables that yield the greatest 
possible efficiency in a sense made explicit below. 

Although we have seen that instrumental variables need only be 
uncorrelated with the errors we now restrict attention to those 
variables W,A such that 

£ ( € * A I W , a) = 0, A = l , . . . ,p; t = l , . . . ,n, 

and we call the row vector W,A the set of instrumental variable 
candidates for Xth. W,A may be of either finite or infinite dimension, 
and may include past or future values of variables first observed at 
time period t. Because E(eth\Wth) = 0, any element of W,A or any 
function of the elements of W,A will be uncorrelated with €,A, and we 
now consider how best to choose functions of W,A as instrumental 
variables. The result that we obtain below says essentially that in the 
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absence of serial correlation or heteroskedasticity the best intrumental 
variables are those functions of W,A appearing in the conditional 
expectation of X f A, given W,A. 

To state the result precisely, we extend the notion of asymptotic 
efficiency as follows. 

DEFINITION 4.52: Given two consistent asymptotically normal es-
timators ßn and ß*^ the estimator β* is essentially asymptotically 
efficient relative to βη if and only if for any δ > 0, there exists Ν(δ) 
such that for all η > Ν(δ\ ( 1 + J)avar βη — avar β* is positive semide-
finite for any β0. Given a class of estimators, a member is essentially 
asymptotically efficient within the class if and only if it is essentially 
asymptotically efficient relative to every other member of its class. 

The need for Definition 4.52 arises because it is possible for two 
asymptotic covariance matrices to fluctuate with η is such a way that 
neither avar βη — avar β * nor avar β* — avar βη is ever positive semi-
definite for all n. However, by considering the difference be-
tween something just slightly greater than avar βη and avar β*, one can 
obtain a positive semidefinite matrix. Establishing that an estimator 
is essentially asymptotically efficient is a consequence of using the 
behavior of consistent estimates of asymptotic covariance matrices to 
infer the behavior of the asymptotic covariance matrices themselves. 
This is based on the following result. 

LEMMA 4.53: Let A„, A„, Bn and Bn be symmetric matrices such 
that An and 5 ^ are 0(1^, det^ w > e > 0 for all η sufficiently large, 
An — An-% 0, Bn — Bn —• 0 and An — Bn is positive semidefinite for 
all n. Then for any δ > 0, there exists Ν(δ) such that for all η > Ν(δ), 
(1 + δ)Αη — Bn is positive semidefinite. Further, if An-+A and 
Bn —• B, where A and Β are constant matrices, then A — Β is positive 
semidefinite. 

Proof: See White [1983, Lemma A.2]. 

This result implies that if An — Bn is always positive semidefinite, 
where A„ and Bn are consistent estimators of asymptotic covariance 
matrices An and Bn, then the estimator with asymptotic covariance 
matrix Bn is essentially asymptotically efficient relative to that with 
asymptotic covariance matrix An. Further, if An and Bn each con-
verges to a limit, then the qualification "essentially" can be removed. 
The next result is established on this basis. 
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THEOREM 4.54 (Optimal instrumental variables): Suppose there 
exists a unique σ-field generated by row vectors W,A such that 

(i) E(eih\Wih) = 0 and E(eth\Sth) Φ 0 for all Sth D a(W,„), h = 
1, . . . , A / = 1, . . . , η; 

(ii) E(e2

h\Wth) = 1, A = 1, . . . ,p,t= 1, . . . , «; 
(iii) £ ( € r t € j W r t , W v ) = 0 , i ^ A = l, . . . 9ρ,τΦί = 1, . . . , 

η; 

and suppose the conditions of Exercise 4.26 hold for instrumental 
variables Ζ satisfying 

E(Xth\Wth) = Zthno9 h= 1, . . . 1, . . . 

where Π 0 is an / X / c matrix of full column rank containing no zero 
rows, and for P„ = (Z 'Z /AZ)"

1
. 

Let Zth be any I X J vector of measurable functions of W,A not equal 
to Zth, and let Ζ be the matrix with rows Zth. ^Suppose that the 
conditions of Exercise 4.26 hold for Ζ and for P„ = (Z' Z/ri)~l. Define 

β* = (Χ,Ζ(Ζ,ΖΥχΖ,Χ)-χΧ'Ζ(Ζ,Ζ)-χΖ,^9 

βη = (Χ'ζφζγ^ζ'χγ^χ'ζφζγ'ζ^, 

Suppose Ζ'Ζ/η- Ε(Ζ' Ζ/η) 0. 
Then β* is essentially asymptotically efficient relative to βη. Fur-

ther, β* is ̂ asymptotically efficient relative to βη, provided that avar β* 
and avar βη both converge to constant matrices. 

Proof: Define 

V„ s v a r ( « "
1 / 2

Z ' € ) , 

\ n = vzr(n-l/2Z'e). 

Given (ii) and (iii), it follows that 

V„ = L W = £ ( Z ' Z / « ) , 

\ n = Ln = E(Z'Z/n). 

To show this, we write 

V„ = £ ( Z ' € € ' Z / « ) 

= " _ 1ί Σ Σ Σ E(Z;hetheTgZrg). 
/ = 1 τ«=1 g«=l 
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By the law of iterated expectations, 

E(Z'theiheTgZTg) = E[E(Z;hetheTgZTg\\Vih, WTg)] 

= £ [ Z ; ^ ( € / A€ T , | W / Ä, W T G) Z T J 

by Proposition 3.65, because Zth and ZTg are both measurable with 
respect to σ ( \ ν , Λ , W T G ) . Substituting (ii) and (iii) gives 

E(Z'thetheTgZTg) = 0, ίΦ τ, g Φ h, 

E{Z[h€thethZth) = E(Z'thZth). 

Hence 

v„ = « - ^ £ ( z ; À ) 

= £ ( Z ' Z A 0 = L „ . 

A similar argument with Z replacing Z yields 

V„
 =

 L „ . 

Now we consider 

( 1 + δ) avar βη — avar β* 

and proceed to show that for any δ > 0, there exists Ν(δ) sufficiently 
large that for all η > Ν(δ), (1 + ί ) avar — avar /?£ is p.s.d. 

First, consider 

a v a r ^ ^ i Q ^ Q J " 1 , 

where Q„ = E(Z 'X/AZ ) . Because £ ( X J W / Ä) = Ζ , Λ Π 0 , we have 

E(Z'thXth) = E[E(Z'thXth\Wth)] 

= E[Z'thE(Xth\Wth)] 

= E{Z'thZth)U0, 

which implies that 

£ ( Ζ ' Χ / « ) = «- 'ΣΣ£(ζ,Ά) 

= « - 2 Σ £(ζ;Λζ(Λ)π0 

= £ ( Ζ ' Ζ / κ ) Π 0 . 
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Hence, 

avar/?n* = (n;£(Z'Z/«)no)-'. 
Next, consider 

avar&^QJ.L-'Q, , ) - 1 , 

where Q„ = £(Z'X/«). Now 

E(Z'lhXlh) = E[E(Z'thXlh\Wlh)] 

= E[Z'lhE(Xth\Wlh)] 

= £[z;„z,An0] 
= £(Ζ;„Ζ,Λ)Π 0, 

so that 

£(Z'x/«) = « - ' ^ £ ( z ; a ) 

= « - 'Ü £(ζ;Λζ,Α)π0 

= £(Ζ'Ζ/«)Π 0 , 

so that 

avar& = (Π^(Ζ'Ζ/ / ΐ )£ (Ζ'Ζ/«) - , £(Ζ'Ζ/«)Π 0 ) - ' . 

Applying Proposition 4.44, we have that 

( 1 + δ) avar β„ — avar β* is p.s.d. 

if and only if 

(avarβ*)~ ι - (1 +<*)-'(avar/?„)-' is p.s.d., 

or equivalently, if and only if 

( 1 + <î)(avar ß*)~l - (avar #,)"' is p.s.d. 

Note that 

(1 + <î)(avar (avar # , ) - ' 

= (1+δ)Π'0Ε(Ζ'Ζ/η)Τ10 

-Π'0Ε(Ζ' Ζ/η)Ε(Ζ' Z/n)-lE(Z'Z/n)U0. 

To evaluate this expression, we apply Lemma 4.53, setting Ân = 
Π;Ζ'Ζ/«Π 0 and B„= Y\'0Z'Zln(Z'Zlri)-'Z'ZlnU0. Under the 
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conditions given, An — An—*0, where An= Π ο / ? ( Ζ ' Ζ ^ Λ ) Π 0 and 
Bn- Bn-^0 where Bn= n'0E(Z'Z/n)E(Z'Z/n)-lE(Z'Z/n)Tl0. 
Now 

An - Bn = Π£(Ζ'Ζ//ι - Ζ'ΖΜΖ'Ζ/^Γ'Ζ'ΖΛΟΠο 

= π;[Ζ'(ΐ - l(t'±r*l')ziri[ii09 

which is p.s.d. for all «. It follows from Lemma 4.53 that for any δ, 
there exists Ν(δ) such that for all η > Ν(δ), (1 + δ)Αη — Bn is p.s.d. 
This implies that ( 1 + J)(avarßV)~x ~~ (avar ßn)~

l is p.s.d., so that by 
Proposition 4.44, (1 + S)a.varpn — avar/?£ is p.s.d. Hence, β* is 
essentially asymptotically efficient relative toβ η by Definition 4.52. It 
also follows from Lemma 4.53 that if avar β* and avar βη converge to 
constant limits, then β* is asymptotically efficient relative to βη. 

Condition (i) states that tf(W,A) is the largest information set such 
that eth has conditional mean zero. Conditions (ii) and (iii) express 
precisely the assumption of the absence of heteroskedasticity or serial 
correlation. 

Note that from a theoretical standpoint, it is no restriction at all to 
suppose that the conditional expectation has this linear form, because 
the elements of Zth can be arbitrary measurable functions of W,A and 
we can simply set Zth = X / A, where Xlh = is(X,A|W / A) and then 
Π 0 = I. From a practical standpoint, however, such instrumental 
variables may not be available because Xth may not be completely 
known (i.e., Π 0 may not be known); however, if the conditional 
expectation is known up to a linear transformation, we can proceed 
without losing any efficiency in estimation. 

Clearly, any variable appearing in both W,A and X / A will appear in 
Z,A, so that when E(Xth\Wlh) = X,A, we obtain the OLS estimator as 
the optimal IV estimator. 

The most restrictive feature of this result is that we assume the 
absence of heteroskedasticity, serial correlation, or even contempo-
raneous correlation among the components of €,. We saw earlier that 
if we drop this assumption, then it may or may not be possible to find a 
finite set of instrumental variables that yields a fully efficient estima-
tor. This situation arises because no attempt is made to remove the 
serial correlation or heteroskedasticity. However, when the form of 
the serial correlation or heteroskedasticity is known, it may be possible 
to remove this "nonsphericality" using an appropriate linear transfor-
mation of the model, and thereby attain efficiency in a manner 
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analogous to the way that GLS improves on the efficiency of the OLS 
estimator when heteroskedasticity or serial correlation are present. 

It requires some care to show that improvements analogous to GLS 
over OLS exist in the IV framework. The approach that we shall take 
is to view a model with nonspherical errors (e.g., heteroskedasticity or 
serial correlation) as arising from a specific nonsingular linear trans-
formation of an underlying spherical model, specifically a model 
satisfying the conditions of Theorem 4.54, and (i)-(iii) in particular. 
Thus, we consider models of the form 

y = Xß0 + l 

where y = C„y, X = C„X, € = Cn€, and C„ is a known nonsingular 
np X np matrix that induces heteroskedasticity or serial correlation 
in €. 

To guarantee that a useful IV estimator exists for the nonspherical 
model just introduced, it will suffice to impose certain restrictions on 
Cn. In particular, we shall seek to ensure that instrumental variable 
candidates W,A exist for X i A. 

To see what restrictions on Cn will suffice for this, we consider a 
sequence of examples. First, suppose ρ = 1 (a single equation 
model). Let Cn have typical elements c,T, and suppose that heteroske-
dasticity is induced by ctt Φ cTT for some / Φ τ = 1, . . . , η. Set 
c,T = 0 if t Φ τ. Then et — c„e, and 

E(eg\Ws) = E(cttet\V/t). 

If c„ is measurable with respect to <r(W,) (i.e., if c„ is a function only of 
W,), then 

E(Z\\Vg) = cttE(et\Wt) = 0, 

so that functions of W, are also available for constructing instrumental 
variables for X,. If ctt were not measurable with respect to <r(W,), then 
no instrumental variables need exist and indeed it can happen that 
£(€,) Φ 0. 

Next, suppose that we have a system of equations (p> 1) with 
contemporaneous correlation induced by c„ Φ lp,t = 1, . . . ,«,and 
c,T = 0, t Φ τ, where c,T is now apXp matrix with elements c / t Â , g, 
h = 1, . . . Then 
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Now let W , A be an arbitrary vector. Then 

E(lh\^J=^E(ctthgetg\^th). 

If ctthg is measurable with respect to a ( W , A ) and if E(etg\\Vth) = 0 for 
g = 1, . . . , Althen E(eth\W/A) = 0. Otherwise, it may or may not 
be true that E(€th\\Vth) = 0. For example, if cuhg is a nonstochastic 
constant, it will be measurable with respect to any information set. 
Also, if W , A consists of only those elements that are common to W ^ , 
g= 1, . . . , p, then E(e4h\\Vth) = 0. The formal way of express-
ing the requirement that W , A consists of only those elements that are 
common to Wtg is to write 

ff(WJ = A"(WL F). 

This denotes the intersection of the σ-fields cr(W^), g= 1, . . . , p, 
which is the maximal σ-field contained in all of them. 

Note that if <T(W,a) is not a subfield of each a ( W ^ ) , g = 1, . . . , ρ, 
then it can happen that E(eth\Wth) Φ 0, which implies that the instru-
mental variables for the transformed model cannot necessarily be 
constructed from the same conditioning variables as in the underlying 
model. 

Now consider a general situation in which there is serial correlation 
as well as contemporaneous correlation and possibly heteroskedasti-
city, so that c„ Φ \ p and c,T Φ 0. Then 

^ η 

In particular, a typical element of €, has the form 
n
 ρ 

€
"»

 =
 Σ Σ

 Z
txhg*-xg-

τ=1 g=\ 

Again, let W , A be an arbitrary vector. Then 

For E(eih\W/A) = 0, it suffices that cnhg is measurable with respect to 
<T(W , a), and that E(eTg\\Vth) = 0. For this it suffices that W , A is 
measurable with respect to a ( W ^ ) , τ = 1, . . . , = 1, . . . ,p;for 
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example, let <x(W,A) = Λ ? = 1 Λ £ β 1 σ(\ν τ^). Now W,A contains only 
variables for which eTg has conditional mean zero for all values of g and 
τ for example, variables jointly strictly exogenous with respect to eth. 

In each case above, it was possible to find conditioning variables for 
the transformed model useful in constructing instrumental variables 
for the transformed model, provided that the elements of C„ were 
appropriately measurable and that the conditioning variables consid-
ered did not contain information on the location of the underlying 
errors involved in the transformation. Although we indicated how 
failure of these conditions can lead to the failure of appropriate 
instrumental variables to exist, the conditions discussed do not ap-
pear to^ be necessary, because appropriate cancellations may 
yield E(eth\\Vth) = 0, even though E(exg\\Vth) Φ 0 for all τ andj*. In 
fact, it can still be true that Z'e/n-^^ 0, wherejhe elements of Zth are 
measurable functions of W,A even when E(eth\ W,A) Φ 0 for all / and h. 

In the cases discussed above, it was assumed only that C„ was 
nonsingular. We do not require C„ to be lower triangular, although 
this is certainly possible. For any lower triangular C„, an upper 
triangular C„ can lead to an identical Ω„ matrix, as well as matrices 
that are neither upper nor lower triangular. In the case of the general 
classical linear model, it makes no difference how Ω„ is "factored." 
Here, however, it does matter, because the way in which Ω„ is factored 
may affect the determination of what instrumental variable candidates 
are available for the nonspherical model, that is, what W,A consists of. 

This is a consequence of the general condition that we adopt to 
ensure the efficiency of the IV analogue of the GLS estimator, namely 
that each row of C„ has elements that are measurable with respect to 
er(W,A), where 

* (W, A)= Λ a(WTg\h=l, . . . , p , f = l , 

This is the natural generalization of the condition imposed in each of 
the special cases considered above. 

EXERCISE 4.55: Verify that if the rows of Cn satisfy the condition 
just given, then 

£ ( 6 J W J = 0 ? A = 1 , . . . ,p;t= 1, . . . , n. 

Further, if instrumental variables Zth are chosen as measurable func-
tions of W,A, show that 

E(Z'ee'Z/n) = Ε(ΖΏηΖΙή), 
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where Ω„ = CnC'n. Hint: Use the law of iterated expectations to 
write 

E(l[hethlgZxg) = E[E(Z[hlhlglTg\Wth, WT,)]. 

Let cotThg = E(etheTg\W,A, \VTg), ωίτ = [conhg] and Ω„ = [ω, τ]. 

The conditions imposed on W rA above imply that W,A contains less 
information than W,A, so that less information is available for con-
structing the instrumental variables for the nonspherical model, gener-
ally speaking. For this reason, the optimal instrumental variables for 
the underlying model cannot generally be obtained by applying the 
transformation C"1 to Z. Nor is it generally true that transformation 
of optimal instrumental variables Ζ for the underlying model by C„ 
yields instrumental variables for the nonspherical model that satisfy 
the conditions of Exercise 4.26. 

Also, note that if C„ is upper triangular, a different set of instrumen-
tal variable candidates may be available than if C„ is lower triangular, 
as alluded to previously. This reveals the importance of a careful 
specification of the way in which a given conditional covariance 
matrix Ω„ arises. 

The second part of Exercise 4.55 makes clear the way in which C„ 
induces a particular form of heteroskedasticity or serial correlation, 
and the condition above specifies precisely what kinds of nonspherical-
ity can be induced. In particular, any nonstochastic choice for Cn is 
always available, because the rows of a nonstochastic matrix will be 
measurable with respect to any σ-field. This allows the case of con-
temporaneous covariance, for which 

ωίτ = Σ if / = τ 

= 0 otherwise, 

for some fixed matrix Σ. It also allows the case of serial correlation, for 
which 

ωίτ = i?|,_T| Φ 0 for some / Φ τ. 

Note that here ωίτ depends only on \t — τ\ and not on t or τ alone. 
More general situations are also admitted, because the elements of a 

given row of Cn can be stochastic. For example, let ρ = 1. Hetero-
skedasticity is allowed in which 

<»„=/(W,) 
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for some function/ In particular, if W, contains y,_, and X,_!, then 
the ARCH model of Engle [ 1982] is allowed. For the simplest form of 
this model, 

coti = E(e2\\Vt) 

= e2-lp0 = (yt_l-Xt_lß0)
2p0. 

If a GLS-like result is available for IV estimators, then we should 
expect to be able to show that the optimal IV estimator as given in 
Theorem 4.54 is asymptotically efficient with respect to the optimal IV 
estimator for any nonspherical model satisfying the condition just 
discussed and the conditions of Exercise 4.26, say, 

k = (X'ZV-'Z'Xr'X'ZV^'Z'y, 
/V I* /V<%f /V CV /V 

where V„ = EiZ'ee'Z/n)^ and Ζ has rows Zth with elements that are 
measurable functions of W,A. Because we have not characterized the 
optimal instrumental variables for this case, it will suffice to show 
efficiency of β* relative to βη for any appropriate choice Z. 

It follows from Theorem 4.26 that 

awarßt = (QnK
lQnr

l 

and 

a v a r Ä - i O ^ Ö J " 1 , 

where Q„ = Ε(Ζ' Χ/ή). Consistent estimators for avar β* and avar βη 

are (X'Z(Zf Ζ)~ΧΖ'XInYx and (Χ'ΖίΖ'Ω^ΖΓ'Ζ'Χ /Λ)" 1, and we in-
vestigate asymptotic efficiency by considering a consistent estimate of 
the difference (avar ß*)~l — (avar fln)~\ that is, 

[ X ' Z f Z ' Z ^ Z ' X - Χ'Ζ(Ζ'Ω^ΖΥχΖ'Χ]Ιη. 

Dropping the division by η and substituting X = C„X and Ω„ = CnC'n, 
we have 

Χ ΖίΖ'ΖΓ'Ζ'Χ - x ' c ^ z ' c ^ z r ' z ' Q x . 

Define Z* = C'nZ and substitute in the above to obtain 

X Z f Z ' Z ^ Z X - X'Z*(Z*'Z*)lZ*'X. 

This expression is a difference between two positive semidefinite 
matrices, and without further information it is not possible to deter-
mine whether this difference is positive semidefinite, which would 
imply the result we seek. 
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However, further information is potentially available. Suppose Z* 
could be adjoined to the matrix of instrumental variables Ζ without 
violating the conditions of Theorem 4 . 5 4 . Because Ζ is optimal, Z* is 
redundant and it can be shown that 

E(Z*'X/n) = Ε{Ζ*'ΖΙη)Ε{Ζ'ΖΙή)-χΕ(Ζ'ΧΙη\ 

provided that E(Z*'ee'Z/n) = E(Z*'Z/n). This fact follows either 
from Proposition 4 . 5 0 or the linear dependence of Z* on Z. Replac-
ing expected values by consistent estimators and dropping a division 
by η yields 

Z*'X = Z*'Z(Z'Z) 1Z'X. 

Substituting this into the apparently indeterminate expression above 
yields 

X Z f Z Z r ' Z X - X'Z(Z'Z)- 1Z'Z*(Z*'Z*)- 1Z*'Z(Z'Z) 1Z / X 

= XfZ(ZZ)xZ\\ - Z*(Z* Z * ) - 1 Z * / ) Z ( Z , Z ) 1 Z , X , 

which is readily seen to be positive semidefinite. Once certain tech-
nicalities have been disposed of, this will be sufficient to prove 
the superiority of β* over β„. 

The success of this approach now depends on whether Z* = C'nZ 
can indeed be harmlessly adjoined to Z. In other words, can the 
matrix Z = (Ζ, Z*) be treated as a legitimate set of instrumental 
variables? For this, it will suffice that Z*h has elements measurable 
with respect to <T(W,a). Because this is straightforward, we leave it as 
an exercise. 

EXERCISE 4 . 5 6 : Show that Zfh has ̂ elements measurable with re-
spect to <r(W,A), when the elements of Z,A are measurable with respect 
to tf(W,A) and each row of C „ has elements ctThg measurable with 
respect to 

< A ) = Λ σ ( \ ν τ , ) , Λ = 1 , . . . , /> ; /= 1, 

Hint: a typical row Zfh can be written 
η Ρ 

Also let 

S t h = V a(W T , ) 
{l<iT^n,l*g*p:cugh+0) 

denote the minimal σ-field containing all of the indicated a ( W ^ ) . 
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This result implies that any elements of Z* can indeed be harmlessly 
adjointed to Z, ensuring the validity of the argument sketched above. 
Now we can formally state and prove the efficiency result for the IV 
analogue of GLS. 

THEOREM 4.57 (Generalized instrumental variables): Suppose 
there exists a unique cr-field generated by row vectors W,A such that 

(i) E(eth\Wth) = 0 and E(eth\Sth) Φ 0 for all Sth D a(W,A), h = 
1, . . . t = 1, . . . , n\ 

(ii) £ ( € 2

A | W , A ) = l , / z = l , . . . ,p,t=l, . . . ,κ; 
(iii) E(etheTg\Wt>nWTg) = 0,h*g=l, . . . ,p,t Φ τ = 1, . . . , 

η; 

and suppose that the conditions of Exercise 4.26 hold for instrumental 
variables Ζ satisfying 

£(X,A|W,A) = Ζ, ΑΠ 0 , h = 1, . . . , A / = 1, . . . , n9 

where Π 0 is an / X k matrix of full column rank containing no zero 
rows, and for P„ = (Z'Z/rt)"1. 

Suppose the conditions of Exercise 4.26 hold for the model 

y = XÂ> + €~ 

where y = C„y, X = C„X, e = Cne and Cn is a given nonsingular 
np X np matrix with rows containing elements c, t A^ measurable with 
respect to 

<r(W,A)= Λ σ(\ν τ,), 

for instrumental variables Z,A chosen as measurable functions of W,A, 
and for P„ = V"1 = E(Z'ee'Z/ri)~l, where Ζ has rows Z,A. 

Define Z* = C'nZ, let Ζ* = Ζ* - ΖΕ(Ζ'Ζ/η)~ιΕ(Ζ'Ζ*/η\ let Ζ 
contain the nonzero columns of Z*, and suppose that the conditions of 
Exercise 4.26 hold for instrumental variables Ζ = (Ζ, Ζ). Define 

β* = (X 'Z iZ 'Zr 'Z 'Xr 'X'Z iZ 'Zr 'Z 'y and 

^ ^ ( X ' Z V ^ Z ' X r ^ X ' Z V ^ Z ' y . 

Then β* is essentially asymptotically efficient relative to βη for 
any choice Cn. Further, β* is asymptotically efficient relative to 
βη provided that avar /?* and avar βη both converge to constant matri-
ces. 

Proof: We wish to show that for any δ > 0 there exists η sufficiently 
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large such that ( 1 + δ) avar βη — avar β% is p.s.d. Given the condi-
tions of the theorem, we have 

avarÂ, = (Q;V-'Q„)-' 

a v a r ^ ^ i Q J L - ^ r 1 , 

where Q „ ^ E(Z'X/n), Q „ = E(Z'X/n) and L „ = E(Z'Z/n). By 
Exercise 4.55 we can write 

avar β„ = [Ε{Χ'ΖΙη)Ε{Ζ'αηΖΙη)-ιΕ{Ζ'ΧΙή)\-' 

= [Ε(Χ' Zln)E(Z'CnQ'nZlnYxE{Z' X/«)]~ 1 

= [E(X'C'„Z/n)E(Z'C„C'„Z/n)-lE(Z'C„X/n)]-1 

Because Z* = C'„Z, we have 

avarß, = [Ε(Χ'Ζ*/η)Ε(Ζ*'Ζ*/η)-ιΕ(Ζ*'Χ/η)]-1. 

We can also express this as 

avar βη = [E(X'Z/n)E(Z'Z/n)-lE(Z'Z*/n)E(Z*'Z*/n)-1 

X E(Z*'Z/n)E(Z'Z/n)-lE(Z'Z/n)]-1 

by making use of the fact that 

£(Z*'Z/H)£(Z'Z/rt)-'£(Z'X/fl) = E(Z*'X/n). 

To verify this equality, we note that Proposition 4.50 implies 

E(z'Z/n)E(Z'Z/n)-lE(Z'X/n) - E(z'X/n) = 0, 

because Ζ is the efficient set of instrumental variables by Theorem 
4.53. Because z* = (z, 0), we can also write 

Ε(ζ*'Ζ/η)Ε(Ζ'Ζ/η)-Έ(Ζ'Χ/η) - E(z*'X/n) = 0. 

By definition, ζ* = Ζ* - Ζ£(Ζ' Z/n)~lE(Z' Z*/n). Substituting this 
expression for z* gives 

Ε(Ζ*'ΖΙη)Ε{Ζ'Ζ/η)-Έ{Ζ'ΧΙη) - E(Z*'X/n) 

-E(Z*'Z/n)E(Z'Z/n)-lE(Z'Z/n)E(Z'Z/n)-lE(Z'X/n) 

+ E(Z*'Z/n)E(Z'Z/n)-lE(Z'X/n) = 0. 

The last two terms above cancel, which leaves the desired result, 

E(Z*'X/n) = Ε{Ζ*'ΖΙη)Ε(Ζ'ΖΙη)-χΕ(Ζ'ΧΙή). 
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Substituting for Qn and L„ gives 

avar£* = [Ε(Χ'ΖΙη)Ε{Ζ'ΖΙηΥχΕ(Ζ'ΧΙή)Υχ. 

To show that ( 1 + 5)avar βη — avar β* is p.s.d., we apply Proposition 
4.44 and Lemma 4.53 and consider the difference between consistent 
estimators of (avar β*)~ι and (avar βηΥ

χ, 

η-χΧ'Ζ(Ζ'ΖΥχΖ'Χ - η-χΧ'Ζ{Ζ'ΖΥι 

Χ Ζ'Ζ*(Ζ*'Ζ*)- 1Ζ* , Ζ(Ζ , Ζ)- 1Ζ , Χ 

= η-χΧ'Ζ(Ζ'ΖΥχΖ\\ - Ζ*(Ζ*'Ζ*)- 1Ζ* ,)Ζ(Ζ ,Ζ)- 1Ζ ,Χ. 

This is a quadratic form in an idempotent matrix, and is therefore 
positive semidefinite. It follows from Lemma 4.52 that (1 + δ) 
(avarß*Yx — (avar$nY

x is p.s.d. for all η sufficiently large. It then 
follows from Proposition 4.44 that (1 + δ) avar ffn — avar β* is p.s.d. 
for all η sufficiently large, and the proof is complete. 

This result guarantees that no transformation of the model satisfy-
ing the conditions of the theorem and inducing heteroskedasticity or 
serial correlation can yield an estimator more efficient than β*, the 
two-stage least squares estimator for the spherical model with optimal 
instrumental variables. Equivalently, removing the heteroskedasti-
city or serial correlation induced by an appropriate transformation 
cannot worsen and will generally improve the efficiency of the estima-
tor, provided optimal instrumental variables are chosen once the 
nonsphericality has been removed. 

In other words, starting from a model with nonsphericality induced 
by a specific transformation C„, efficiency can be obtained by trans-
forming the model 

y = XÂ, + € 

by premultiplying by C"1 to give 

C-xy = C-n

xXß0 + C-n

xi 

or 

y = XÂ> + €. 

This step is precisely analogous to the GLS transformation. Then, 
using the optimal instrumental variables for the spherical model, 
obtain the efficient (2SLS) estimator: 
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ßt = (Χ'ΖίΖ'ΖΓ'Ζ'ΧΓ'Χ'ΖίΖ'ΖΓ'Ζ'γ 

= ( X , C - 1 Z ( Z / Z ) - 1 Z , C - 1 X ) - , X , C - 1 ,Z ( Z ' Z ) - 1 Z , C - 1 y . 

Note that the optimal instrumental variables are not generally 
obtained by a transformation of instrumental variables available for 
the nonspherical model. However, there are at least two important 
special casesjvhere it is possible to choose Ζ = C„Z without possibly 
violating Z'e/n-^* 0. These are the cases of pure heteroskedasticity 
or contemporaneous correlation in a nonrecursive system. If the 
choice Ζ = C„Z is available, then one can substitute Ζ = C~lZ in the 
expression above. Further substitution of Ω"1 for C V C " 1 gives 

β*η = ( ^ Ω - ' Ζ ί Ζ ' Ω - ' Ζ Γ ' Ζ ' Ω " 1 ^ 

As special cases this contains the SURE estimator of Zellner [1962] 
and the 3SLS estimator of Zellner and Theil [1962] for Ω„ known. 

In fact, it is always possible to represent ß* in this form by appropri-
ately defining Z. However, when this is done, Ζ may not be a 
legitimate choice of instrumental variables for the nonspherical 
model. 

Although we have gained considerable insight by supposing that 
nonsphericality is induced by a particular transformation of a spheri-
cal model, this is not necessarily the way in which models present 
themselves. Often, economic theory will specify the instrumental 
variable candidates W / Ä for the nonspherical model, which then im-
plies a particular form for Ω„ when we condition on <7(W,A, W v ) . 
Because there is generally no unique transformation B„ such that 
Β„Ω„Β^ = I, one may not know C„. The choice of B„ then depends 
on convenience or plausibility. The question that now arises is 
whether it matters that C„ is unknown or whether it suffices simply to 
know (or be able to estimate) Ω„. The next theorem provides general 
conditions under which no efficiency is lost by using B„ Φ C"1. 

THEOREM 4.58: Suppose the conditions of Theorem 4.57 are satis-
fied. For any nonsingular matrix Bn such that Β„Ω„Β^ = I, where 
CnC'n = Qn, define 

y = B„y, X = B„X, and € = ΒΛ€. 

Let W,A be a row vector such that E(ëth\Wth) = 0, and E{iith\Sth) Φ 0 
for any 8th D σ( W,A), and suppose that the conditions of Exercise 4.26 
hold for the model y = XßQ + €, for instrumental variables Ζ satisfying 

£(X,A|W,A) = Ζ, ΑΠ 0 , Λ = 1 , . . . , / ? , / = 1 / ? , 
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where Π 0 is an / X k matrix of full column rank containing no zero 
rows, and for P„ = ( Z ' Z / M ) - 1 . Define 

0„ = (Χ'ΖίΖ'ΖΓ'Ζ'ΧΓ'Χ'ΖίΖ'ΖΓ'Ζ'Ϋ. 

Then D-^Mß„ - ßo) ~ N(0, I), where D„ - ( Q ^ ' Q J - , Q„ -
E(Z'X/n), and L„ - E(Z'Z/n). 

Now define A„ = B„C„ with ftth block a ( T, each with elements 
atThg. Suppose that 

<r(W,A) = Λ <r(Wt<r), 
{1 <s τ s π, 1 s; £ a , r h g * O.a.s.} 

A = 1, . . . , ρ , i = 1, . . . , Λ, 

and that a, t Ag is measurable with respect to σ( W i A ). Suppose that A"1 

has trth block a'T, each with elements a!Thg. If 

<w A) = Λ a(S\Tg), 
{ l S T S n , l s ^ s p ; a / T A * ^ o , a . s . } 

A= 1, . . . ,p, t= 1, . . . , n, 

and if * t x hg is measurable with respect to <x(W,A), then avar/fw — 
avar /?* — 0. 

Proof: See White [1983, Theorem 3.7]. 

The simplest situation in which to verify the conditions of this 
theorem is when one has only contemporaneous correlation or heter-
oskedasticity and the instrumental variable candidates are identical for 
all equations of the system. In time-series contexts, the measurability 
requirements on 2 i n hg and atThg will be satisfied if An has elements that 
are functions only of instrumental variables strictly exogeneous with 
respect to et (e.g., if A„ is a matrix of constants). Note also that the 
requirements on a(W,A) and cr(W,A) imply <r(W,A) = <r(W,A). 

Just as in the classical development of the GLS estimator, we have 
assumed that Ω„ or Cn is known. This is too unrealistic. If Ω„ is 
completely unknown, then the estimator of Proposition 4.45 is still 
available. Often it is assumed that Ω„ is known up to a finite number 
of parameters. These are estimated (e.g., in afirst-stage using OLS or 
2SLS residuals) and used to form an estimate Ω„, which replaces Ω„ in 
computations. The consequences of doing this are considered in 
Chapter VII. There we see that for several important special cases, 
replacing Ω„ by Ω„ has no effect on the asymptotic properties of the 
estimators. 

So far, we have seen that additional instrumental variables can 
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increase asymptotic efficiency and that appropriate transformations of 
a nonspherical model can also improve efficiency. Another way of 
increasing the efficiency of our estimators is through the imposition of 
prior knowledge embodied in linear or nonlinear constraints on the 
parameters. Because the case of linear restrictions is a special case of 
nonlinear restrictions, we formally consider only the latter, and leave 
derivation of the results for linear restrictions as an exercise. 

Given constraints s(ß0) = 0, where s: Uk —> Ug is a known contin-
uously differentiable function, such that rank Vs(/?0) = q and 
Vs(>ff0) < », the constrained instrumental variables estimator can be 
found as the solution to the problem 

which is equivalent to finding the saddle point of the Lagrangean 

The first-order conditions are 

Setting βη = (Χ'ΖΡ,,Ζ'ΧΓ'Χ'ΖΡ,,Ζ'γ and taking a mean value ex-
pansion of s(ß) around s(ffn) yields the equations 

where is the q X k Jacobian matrix with 7 t h row evaluated at a 
mean value ß%\ To solve for λ in the first equation premultiply by 
VsiX'ZRZ'X)- 1 to get 

substitute ~s(ßn)= Vs(ß - j}n), and invert Vs(X'ΖΡ,,Ζ'X)"1 Vs(ß) to 
obtain 
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The expression for d£/dß above yields 

g _-(X'zPnz'X)-^S(ß)'k 
ß-ßn J

 ' 
so we obtain the solution for β by substituting for λ: 

β = βη- (Χ'ζ^ζ'χ^νβίΑ'ΐνβίΧ'ζ^ζ'χ^νβίΑΓβίΑ)-
The difficulty with this solution is that it is not in closed form, because 
the unknown β appears on both sides of the equation. Further, 
appearing in this expression is Vs, which has rows each of which 
depend on a mean value lying between β and βη. 

Nevertheless, a computationally practical and asymptotically 
equivalent result can be obtained by replacing Vs and Vs(/?) by Vs(ßn) 
on the right-hand side of the expression above, which yields 

β * = ß n - (X'zPHz'xrlvs(ßn)'[srs(ßn) 

χ(Χ'ζΡηζ'Χ)-*ν*(βη)'Γ*(βη). 
This gives us a convenient way of computing a constrained IV estima-
tor. First we compute the unconstrained estimator, and then we 
"impose" the constraints by subtracting a "correction factor" 

( X ' Z ^ Z ' X r ^ s i ^ i q V s ^ J i X ' Z P ^ Z ' X r ^ s i ^ J l ^ s i Ä ) 

from the unconstrained estimator. We say "impose" because ß * will 
not satisfy the constraints exactly for any finite n. However, an 
estimator which does satisfy the constraints to any desired degree of 
accuracy can be obtained by iterating the procedure just described, 
that is, by replacing βη by ß * in the formula above to get a second 
round estimator, say, β**. This process could continue until the 
change in the resulting estimator was sufficiently small. Nevertheless, 
this iteration process does not improve the asymptotic efficiency 
beyond that of ß%. 

EXERCISE 4.59: Define 

ß**=ßt - (x'zPHz'xriv*(ßiYiv*(ßi) 
χ ( x ' z ^ z ' x r ^ S I I Ï ; ) ' ] -

1
» ^ ) -

Show that under the conditions of Exercise 4.26 and the conditions on 
s that yfn(ßt*-ßt)^0, so that Jn(ß*-ßQ) has the same 
asymptotic distribution as Jn(fiÎ* — ßQ). (Hint: Show that 
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In establishing the asymptotic efficiency result, we only consider the 
improvement that can be achieved over the best IV estimator for given 
instrumental variables that does not embody the constraints, that is, 
ß n = (X 'ZV- 'Z'Xr 'X'ZV- 'Z'y . 

THEOREM 4.60: Suppose tl e conditions of Exercise 4.26 hold for 
Pn = V"1 and that s: Uk —• Rq is a continuously differentiable function 
such that s(ß0) = 0, Vs(&) < oo and rank Vs(ß0) = q. Define ß n = 

( X ' Z V Z ' X r ' X ' Z V Z ' y and define ß*n as above with P„ = V"1. 
Then 

avar ß n — avar β* 

= avaxßnVs(ß0)'[Vs(ß0) avarß nVs(ß 0)T xVs(ß 0) avar&, 

which is a positive semidefinite matrix. 

Proof: From Exercise 4.26 it follows that 

λη = \ - (X'ZY->z'xrv*(ßny[vs(ßn) 

Under the conditions of Exercise 4.26, ß n ß Q and Proposition 2.30 
applies to ensure that A n — A n —• 0, where 

A „ = I - w*rßHVs(ßoy[Vs(ß0) avar ßnVs(ß0)T
lVs(ß0). 

because Jn(ßn — ßQ) is Op( 1 ) as a consequence of Exercise 4.26. From 
the Asymptotic equivalence lemma 4.7 it follows that ^fn(ß* — ßQ) has 
the same asymptotic distribution as Anfn(ßn — ßQ). If follows from 
Corollary 4.24 that Υ-χ/2ΑηΜβη - β0) (hence Γ~^2Μβη ~ ßQ)) is 

where 

Hence, by Lemma 4.6, 

Mß*n-ß0)-KM$n-ßo) 

= (An-A„)Mß„-ßo)^0, 

Taking a mean value expansion of s(/?„) around ßQ gives s(&) = 
s(/?02 + Vs(/?„ — ßQ\ and because s(/?0) = 0, we have s(pn) = 
Vs(ßn — ßQ). Substituting this in the formula for β* allows us to write 
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asymptotically N(0,1), so that 

avar β* = Γ„ = A n avar βηΑ'η. 

Straightforward algebra yields 

avar ß * = avar ß n - avar ßnVs(ß0)' 

X [Vs(&) avar ßnVs(ß0)T
lVs(ß0) avarß,, 

and the result follows immediately. 

This result guarantees that imposing correct a priori restrictions 
leads to an efficiency improvement over the efficient IV estimator that 
does not impose these restrictions. Interestingly, imposing the restric-
tions using the formula for β* with an inefficient estimator βη for given 
instrumental variables may or may not lead to efficiency gains relative 
ta fa. 

The result of Theorem 4.60 does not allow us to compare the 
efficiency of estimators obtained from different transformations of the 
underlying model y = XßQ + €. Nevertheless, it is reasonable to 
expect that when the restrictions are imposed on a relatively efficient 
estimator, the resulting estimator is more efficient than the estimator 
obtained by imposing the constraints on a relatively inefficient estima-
tor (although one efficient within its class). The next result formalizes 
this notion, which is helpful in guaranteeing the efficiency of some 
estimators considered in Chapter VII. 

THEOREM 4.61: Consider the models 

y = Xß0 + i 

and associated instrumental variables Ζ and Z, and suppose that the 
conditions of Exercise 4.26 hold for both. Define the unconstrained 
estimators 

^ ^ ( X ' Z V - ^ X ^ X ' Z V ^ Z ' y , 

β*η = (X'ZVZ'Xr'X'ZV-'Z'y , 

and suppose that β* is asymptotically efficient relative to ß n so that 
avar βη — avar β% is positive semidefinite for all η sufficiently large. 
Define the constrained estimators 
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^ ^ ^ - ( X ' Z V - ' Z ' X r ' V s i Â , ) ' 

• [Vs i^XX'ZV^'Z'XrVs^J ' l - ' s iÄ) 

and 

ß n = ß*„ - (X'ZV-'Z'Xr'Vsi / f^' lVs^KX'ZV^Z'X)- ' 

• V s ( ^ ) ' ] - ' s ( ^ ) . 

Then avar ß„ — avar ß„ is positive semidefinite for all η sufficiently 
large. 

Proof: Following the proof of Theorem 4.60, we have 

avarβ η = avar/?* - avarßtVs(ß0)
f[Vs(ß0) 

• avar/fîVS(A)']-'VS(A)avar^* 

avar β, = A„ (avar#,)A„, 

where 

A„ = I - (Q^V-'QJ-Vsi /JJ' lVsi^XQ^ 'Oj - 'Vsi / iJ ' l - 'VsiÄ) . 

Hence, 

avar β„ — avar β„ 

= A„ avar& A„-avar/J* 

+ avarßtVs(ß0)'[Vs(ß0) avar/?*Vs(/î0)']-'VS(jî0) avar/?* 

= A„ (avar&)A n - A n (avar^*)A; 

+ A„ (avarj&*)A„-avar/i* 

+ war ß*nVs(ß0)'[Vs(ß0) avarjff*Vs(^0)']-'Vs(/?0) avar£*. 

The first term is positive semidefinite for all η sufficiently large because 

A„ (avar β„)Α'„-A„ (avar β* )A'n = A„ (avar β„ - avar ßt )Κ, 

and avarß„ — avar ßt is positive semidefinite for all η sufficiently large 
by assumption. The result then follows, provided that 

A„ (avar/?* )A„-avar/?* 

+ avar/?*Vs(Ä,)'[Vs(/U avar^*Vs(jff0)']-'Vs()ff0) avar/f* 

is positive semidefinite for all η sufficiently large. 
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Let 

B„ - ( Q ^ V ^ Q J - V s i ^ J ' f V s ^ X Q ^ V - ' Q J - ' V s ^ ) ' ] - , 

so that 

A„ = I - B„Vs(Ä,). 

Then, by definition of A„, 

A ^ a v a r ^ A J . - a v a r / ? : 

= -B„Vs(Â,) avar;?* - avar ß*Vs(ß0)'B'n 

+ B„Vs(/? 0)avar^Vs(j9 0)'B;, 

so that 

A„(avar/?î)A;-avar/?î 

+ avar ß*Vs(ß0)' 

• [Vs(ß0) avar/?*VS(^0)']-'Vs(/f0) avar β* 

= B„[Vs(yî0) avarß*nVs(ß0)']B'n 

- B„Vs(Ä,) avarjff* - avar ßtVs(ß0)'B'„ 

+ avar ßWs(ßoy 

• [Vs(ß0) avarßtVs(ß 0)T l V S(ß 0) avar/»;. 

Now let 

C y ^ t V s ^ J a v a r ^ V s ^ ) ' ] ' / 2 , 

D„ = Vs(/?0)avar/?*. 

Then 

A„ (avar jff„*)A;,-avar 

+ avar^Vs(/? 0)'[Vs(/? 0) a v a r ß t V s ( ß 0 ) ' ] - l V s ( ß 0 ) avar) 

= B „ c y 2 c y 2 B ; - b„d„ - d ; b ; + D i c ^ c - " 2 ^ 

= B „ c y 2 c y 2 e ; - b ^ c - ^ d , - D'„c-^aj
2B'„ 

+ d ; c - ' / 2 c ^ / 2 d „ 

= ( B „ c y 2 - D ; c - ' / 2 ) ( B „ c y 2 - O'„c-^y, 
which is positive semidefinite for all n, and the result follows. 
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C H A P T E R V 

Central Limit Theory 

In this chapter we study different versions of the central limit 
theorem that provide conditions guaranteeing the asymptotic normal-
ity of « ~

1 / 2
X ' € or n~l/2Z'e required for the results of the previous 

chapter. As with laws of large numbers, different conditions will 
apply to different kinds of economic data. Central limit results are 
generally available for each of the situations considered in Chapter III, 
and we shall pay particular attention to the parallels involved. 

The central limit theorems we consider are all of the following form. 

PROPOSITION 5.0: Given restrictions on the dependence, heteroge-
neity, and moments of a scalar sequence {Z,}, (Zn — fln)/(âj Jn) = 
4n(Zn — μη)/ση ~ JV(0, 1), where fln = E(Zn) and σ2

η/η = var Zn. 

In other words, under general conditions the sample average of a 
sequence has a limiting unit normal distribution when appropriately 
standardized. The results that follow specify precisely the restrictions 
that are sufficient to imply asymptotic normality. As with the laws of 
large numbers, there are natural trade-offs among these restrictions. 
Typically, greater dependence or heterogeneity is allowed at the ex-
pense of imposing more stringent moment requirements. 

Although the results of the preceding chapter imposed the asymp-
totic normality requirement on the joint distribution of vectors such as 
AT

1 / 2
X '€ or «

_ 1 / 2
Z ' € , it is actually only necessary to study central limit 

theory for sequences of scalars. This simplicity is a consequence of 
the following result. 
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PROPOSITION 5.1 (Cramer- Wold device): Let {bn} be a sequence 
of random k X 1 vectors and suppose that for any real k X 1 vector λ 
such that λ'λ= 1, k'bn ~ Λ/Ζ, where Ζ is a /: X 1 vector with joint 
distribution function F(z). Then the limiting distribution function of 
bn exists and equals F(z). 

Proof: See Rao [1973, p. 123]. 

We shall apply this result by showing that under general conditions, 

n-m £ A'V-^Xjc, * x'z or >Γ 1 / 2]Γ A'V-^Zfe - λ'Ζ, 
/ = 1 /«=1 

where Ζ ~ N(0,1), which, by Propositions 5.1, allows us to obtain the 
desired conclusion, i.e., 

V - | / 2, r l / 2X ' € ~ N(091) or \-l/2n-l/2Z'e ~ N(0,1). 

When used in this context below, the vector λ will always be under-
stood to have unit norm, i.e., λ'λ = 1. 

V. 1 Independent Identically Distributed 
Observations 

As with laws of large numbers, the case of independent identically 
distributed observations is the simplest. 

THEOREM 5.2 (Lindeberg-Levy): Let {Z,} be a sequence of i.i.d. 
random scalars. If var Ζ, = σ2 < °°, σ2 Φ 0, then 

Γη(Ζη-βη)Ιαη = ΜΖη-μ)Ισ=η-"2 £ (Ζ, — μ)/σ ~ Ν(0, 1). 

Proof: Let f(À) be the characteristic function of Ζ, — μ and let fn(k) 
be the characteristic function of Jn(Zn — μη)/ ση = n~1/2 Σ^ , 
(Ζ, — μ)/σ. From Propositions 4.13 and 4.14 we have 

Μλ) = ΑλΙ(σ4~η)Υ 

or 

\ogfn(k) = n\ogf(kl(oJn)). 

Taking a Taylor expansion of f(À) around λ = 0 gives f(À)= 1 — 
σ2λ2/2 + ο(λ2), since σ 2 < 0 0 by Proposition 4.15. Hence 
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log/n(A) = η log[ 1 - λ2/2η + ο(λ2/η)] — - λ212 as η — oo 

Hence ̂ (λ) —> exp(— λ2/2). Since this is continuous at zero, it follows 
from the continuity theorem 4.17, the uniqueness theorem 4.11 and 
Exercise 4.10(i) that Jn{Zn - βη)/ση ~ N(0, 1 ). 

Compared with the law of large numbers for i.i.d. observations, we 
impose a single additional requirement, i.e., that var Zt= σ2 < oo. 
Note that this implies E\Zt\ < oo. (Why?) Also note that without loss 
of generality, we can set E(Zt) = 0. 

We can apply Theorem 5.2 to give conditions which ensure that the 
conditions of Theorem 4 .25 and Exercise 4 .26 are satisfied. 

THEOREM 5 . 3 : Given 

(i) y = XA> + €; 
(ii) {(X,, €,)'} is an i.i.d. sequence; 
(iii) (a) £(X,'€,) = 0; 

(b) E\Xthieth\
2 < oo, h = 1, . . . , ρ, / = 1, . . . , k; 

(c) V„ = var(«~ 1 / 2X'€) = V is positive definite; 
(iv) (a) E\XM\

2«»9h=l, . . . . . . ,k; 
(b) M = ϋχΧ,'Χ,) is positive definite. 

Then Ό-χ/24η(βη - β0) ~ Ν(0,1), where D = M-'VM" 1 . Suppose in 
addition that 

(ν) there exists V„ symmetric and positive semidefinite such that 
v „ - v ^ o . 

Then D„ - D 0, where D„ = (X'X/n)-l\n(X'X/n)-1. 

Proof: We verify the conditions of Theorem 4 .25 . We apply 
Theorem 5.2 and set Zt = A'V~1 /2X,'€,. The summands A ,V~ 1 / 2X /

,€ / 

are i.i.d. given (ii), with E(Zt) = 0 given (iiia), and var Zt = 1 given 
(iiib) and (iiic). Hence n~l/2 Z , = n~l/2 Σ? β 1 A'V-1 / 2X,'€, ~ 
Λ^(0,1 ) by the Lindeberg-Levy theorem 5 .2 . It follows from Proposi-
tion 5.1 that y-v2rrl'2X'e ~ N(0,1), where V is O(l) given (iiib) and 
positive definite given (iiic). It follows from Komolgorov's strong law 
of large numbers, Theorem 3.1, and from Theorem 2 .4, that X'X/n — 
M 0 given (ii) and (iv). Since the rest of the conditions of Theorem 
4 .25 are satisfied by assumption, the result follows. 

In many cases V may simplify. For example, it may be known 
that E(e2\Xt) = σ 2 , (ρ = 1). If so, V - £(X,'€,€,'X,) = E{e2X'tX) = 
E(E(e2X;X,|X,))£(£(€2|X,)X;X,) = a2E(X[Xt) = <j2M. The obvi-
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ous estimator for V is then V„ = ôl(X'X/n\ where ô\ is consistent for 
a\. A similar result holds for systems of equations in which it is 
known that Z:(€,€,'|X,) = I (after suitable transformation ojan under-
lying model). Then V = M and a consistent estimator is V„ = (Χ' X/ 
ri). Consistency results for more general cases are studied in the next 
chapter. 

In comparison with the consistency result for the OLS estimator, we 
have obtained the asymptotic normality result by imposing the addi-
tional second moment conditions of (iiib) and (iiic). Otherwise, the 
conditions are identical. A similar result holds for the IV estimator. 

EXERCISE 5.4: Prove the following result. Given 

(i) y = X Ä + €; 
(ii) {(Ζ,, X,, €,)'} is an i.i.d. sequence; 
(iii) (a) £(Z,'€,) = 0; 

(b) E\Zthieth\
2
<^h= 1, . . . , p , i = l , - - -

(c) V„ = var(«~1 / 2Z'€) = V is positive definite; 
(iv) (a) E\ZthiXthj\ < oo, h = 1, . . . , A / = 1, . . . , /, and 7 = 

1, . . . 

(b) Q = £(Z;X,) has full column rank; 
(c) P„ P, finite and positive definite. 

Then D 

Suppose further that 

(v) there exists V„ symmetric and positive semidefinite such that 

v w - v ^ o . 
Then D„ — D —> 0, where 

EXERCISE 5.5: If ρ = 1 and Eie^Z^ = a\, what is the efficient IV 
estimator? What is the natural estimator for V? What additional 
conditions ensure that P„ — Ρ 0 and \ „ — V 0? 

These results apply to observations from a random sample. How-
ever, they do not apply to situations such as the standard regression 
model with fixed regressors, or to stratified cross sections, because in 
these situations the elements of the sum AT

 1 / 2 Σ^, X'tet are no longer 
identically distributed. For example, with X, fixed and E(ej) = σ\, 
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var X'tet = σ^Χ,'Χ,, which depends on Χ,'Χ, and hence differs from 
observation to observation. For these cases we need to relax the 
identical distribution assumption. 

V.2 Independent Heterogeneously 
Distributed Observations 

Several different central limit theorems are available for the case in 
which our observations are not identically distributed. The most 
general result is in fact the centerpiece of all asymptotic distribution 
theory. 

THEOREM 5.6 (Lindeberg-Feller): Let [Zt) be a sequence of in-
dependent random scalars with E(Zt) = μ,, var Zt = a] < oo, σ] Φ 0 , 
and distribution functions Ft(z). Then 

ΜΖη-μη)/ση^Ν(0, 1 ) 

and 

lim max η~ι(σ?/σΐ) = 0 

if and only if for every e > 0 , 

l i m a " 2 * - 1 ] ? f (z-pt)
2dFt(z) = 0. 

Proof: See Loeve [ 1 9 7 7 , pp. 2 9 2 - 2 9 4 ] . 

The last condition of this result is called the Lindeberg condition. It 
essentially requires the average contribution of the extreme tails to the 
variance of Ζ, to be zero in the limit. When the Lindeberg condition 
holds, not only does asymptotic normality follow, but the "uniform 
asymptotic negligibility" condition m a x l s / s„ η~\σ^Ισ2

η) —* 0 as 
η —* oo also holds. This condition says that none of the Zt has a 
variance so great that it dominates the variance of Zn. Further, since 
α] Φ 0 , it must be true that na2

n —* oo, so ησ2

η = Σ ^ Β 1 σ] is prevented 
from converging to some finite value. Together, asymptotic normal-
ity and uniform asymptotic negligibility imply the Lindeberg condi-
tion. 

EXAMPLE 5.7: Let σ2 = p\ 0 < ρ < 1. Then ησ2

η = Σ ^ , ρ1 — ρ/ 
(1 - / ? ) a s « ^ o o , a n d m a x^nη ~ ι ( σ 2 / σ 2

η ) = ρ / [ ρ / ( \ -ρ)]=\-ρΦθ. 
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Hence {Z,} is not uniformly asymptotically negligible. It follows that 
the Lindeberg condition is not satisfied, so asymptotic normality may 
or may not hold for such a sequence. 

EXAMPLE 5 .8 : Let {Z,} be i.i.d. with varZ, =σ2 < ». By Theorem 
5.2 , 4n(Zn — βη)1ση~ N(0, 1). Further, σ2 = er2, so m a x K K„ 
η~ι(σ2/σΙ) = η~ι(σ2/σ2) —* 0 . It follows that the Lindeberg condition 
is satisfied. 

EXERCISE 5.9: Give a direct demonstration that the Lindeberg 
condition is satisfied for identically distributed {Zt} with var Z, = 
o2 < », so that Theorem 5.2 follows as a corollary to Theorem 5 .6 . 
Hint: apply the Monotone Convergence Theorem (Rao [ 1 9 7 3 , p. 

In general, the Lindeberg condition can be somewhat difficult to 
verify, so it is convenient to have a simpler condition that implies the 
Lindeberg condition. This is provided by the following result. 

THEOREM 5 . 1 0 (Liapounovf): Let {Z,} be a sequence of indepen-
dent random scalars with Ε(Ζί) = μί, var Ζ, = σ 2 , σ] Φ 0 , and 
E\Zt - pt\

2+s < Δ < oo for some δ > 0 and all /. If σ 2 > δ' > 0 for all 
η sufficiently large, then Jn(Zn — μη)/ση ~ N(0, 1). 

Proof: We verify that the Lindeberg condition is satisfied. 

Whenever ( ζ — μ)2 > eno2

n, it follows that \z — μ,| δ< (eno2) m \ so 

135]) . 

\ζ-μ,)2>€ηό2 
\z-M,\™dFt(z) 

^{€ησ2^2Ε\Ζί-μί\ 

t As stated, this result is actually a corollary to Liapounov's original theorem. See 
Loeve[1977, p. 287]. 
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Hence for any e > 0, 

ön

Art 

< σ-2(βησ2

η)-
δ<2Α = η~δ/2σ~2~δ€~δ/2Α. 

Since σ2 > δ\ σ~2~δ < (δ')~ι~δ/2 for all η sufficiently large. It follows 
that 

This result allows us to substitute the requirement that some mo-
ment of order slightly greater than two is uniformly bounded in place 
of the more complicated Lindeberg condition. Note that E\Zt\

2+ô < 
A would also imply that E\Zt — ßt\

2+s is also uniformly bounded. 
Also note the analogy with Corollary 3.9. There we obtained a law of 
large numbers for independent random variables by imposing a uni-
form bound on E\Zt\

l+s. Now we obtain a central limit theorem 
imposing a uniform bound on E\Zt\

2+s. 
We seek an asymptotic normality result analogous to Theorem 5.3 

for independent heterogeneous random variables. If we apply 
Theorem 5.10 instead of Theorem 5.2, we run into a small difficulty. 
Recall that we applied the Cramer-Wold device to the sums η~ι/2 Σ?=ι 

λ' V~1 / 2X,'€,, where V = var(«~ 1 / 2X'€). In the present case the ran-
dom variables X,'€, are no longer identically distributed, and there is 
now no reason to suppose that V„ is a constant or has a constant limit, 
in general. By analogy, we would like to apply the Cramer-Wold 
device to n~l/2 Σ? j A'V- 1 / 2X,'€,. But the summands A'V- | / 2X,'€, 
now depend explicitly on n, a possibility not covered by Theorem 
5.10. Nevertheless, the needed generalization is readily available. 

THEOREM 5.11: Let {Znt} be a sequence of independent random 
scalars with E(Znt) = μηη var Znt = o2

nt± o2

nt Φ 0, and Ε\Ζηί\
2+δ < 

A < oo for some δ > 0 and^all t. Define Zn = n~] Σ ^ , Znn fln = n~x 

IJL, μηί and σ2

η = var 4ηΖ^ = n~l Σ?_, σ2

ηί. If σ2, > δ' > 0 for all η 
sufficiently large, then 4n(Zn — βη)/ση ~ N(0, 1). 

— 0 as 

Proof: See Loeve [1977, pp. 287-290]. 
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PROPOSITION 5 . 1 3 : Given 

(i) y = XjS0 + €; 
(ii) {(Ζ,, X,, €,)'} is an independent sequence; 
(iii) (a) £(Z,'€,) = 0; 

(b) E\Zthieth\
2+ô<A<™ for some δ>0 and all h = 

1, . . . , / ? , / = 1, . . . , / , and /; 
(c) \ n ~ var(A2~1 / 2Zr€) is uniformly positive definite; 

(iv) (a) E\ZihiXthj\
l+â<A<<x> for some δ>0 and all h = 

1, . . . , p , i= 1, . . . , lj= 1, . . . ,/:, and/; 
(b) Q„ ~ Ε(Ζ'Χ/η) has uniformly full column rank; 
(c) P„ — P„ 0, where {P„} is O(l) and uniformly positive 

definite. 

Then Ό-γ'24η{$η - β0) ~ W(0,1), where 

Suppose in addition that 

EXERCISE 5 .12 : Prove the following result. Given 

(i) y = X & + € ; 

(ii) {(X,,€,)'} is an independent sequence; 
(iii) (a) £ ( X , ' € , ) = 0; 

(b) £ Ί Χ / Α /€ ί Α | 2 + < 5< Δ < ο ο for some δ>0 and all h = 
1, . . . ,p, i = 1, . . . ,k, and/; 

(c) V„ = var ( / ?~ 1 / 2X / €) is uniformly positive definite; 
(iv) (a) E\X2

hi\
l+s<A<oo for some δ>0 and all h = 

1, . . . , p , / = 1, . . . , a n d / ; 
(b) M„ = E(X'X/n) is uniformly positive definite. 

Then D" 1' 2 VA(& - & ) ~ N(0,I), where D„ = Μ ^ ν , , Μ " 1 . Suppose 
in addition that 

(v) there exists V„ symmetric and positive semidefinite such that 
V - v ^ 0 

Then D„ - D„ ^ 0, where D„ = (X 'X/AZ)"
1
 V ^ X ' X / H ) "

1
. 

Note the general applicability of this result. We can let X , be fixed 
or stochastic (although independence is required), and the errors may 
be homoscedastic or heteroscedastic. A similarly general result holds 
for instrumental variables estimators. 
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(v) there exists V„ symmetric and positive semidefinite such that 
V - V -^0 

Then D„ — D„ 0, where 

D„ s ( Χ ' Ζ Ρ ^ Ζ ' Χ / ^ Γ ^ Χ ' Ζ / ^ Ρ ^ 

Proof: We verify the conditions of Exercise 4.26. To apply 
Theorem 5.11, let Znt = X'\-x,2Z'tet and consider n~x/2 Σ?., 
A'V~1 / 2Z,'€,. The summands Z n / are independent given (ii) with 
E(Znt) = 0 given (iiia), σ 2

 = 1 given (iiic), and E\Znt\
2+s uniformly 

bounded (apply Minkowski's inequality) given (iiib). Hence n~x'2 

Σ? = 1 Znt= rr
x/2 Σ{1, k'\-

x
'

2
Z'tet~ N(0, 1) by Theorem 5.11 and 

\-χι2γΓχι2Ζ'ί~ N(0, I) by the Cramér-Wold device, Proposition 
5.1. 

Assumptions (ii), (iva), and (ivb) ensure that Z'Xjn — Q„ 0 by 
Corollary 3.9 and Theorem 2.24. Since the remaining conditions of 
Exercise 4.26 are satisfied by assumption, the result follows. 

Note the close similarity of the present result to that of Exercise 5.4. 
We have dropped the identical distribution assumption made there at 
the expense of imposing just slightly more in the way of moment 
requirements in (iiib) and (iva). Otherwise, the conditions are identi-
cal. This relatively minor trade-off has greatly increased the applica-
bility of the results. Not only do the present results apply to situations 
with fixed regressors and either homoscedastic or heteroscedastic 
disturbances, but they also apply to cross-sectional data with either 
homoscedastic or heteroscedastic disturbances. Further, by setting 
1 < ρ < oo? the present results apply to panel data (i.e., time-series 
cross-sectional data) when ρ observations are available for each indi-
vidual. 

As previously discussed, the independence assumption is not as 
appropriate in time-series applications, so we now turn to central limit 
results applicable to time-series data. 

V .3 Dependent Identically Distributed 
Observations 

In the last two sections we saw that obtaining central limit theorems 
for independent processes typically required strengthening the mo-
ment restrictions beyond what was sufficient for obtaining laws of large 
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numbers. In the case of stationary ergodic processes, not only will we 
strengthen the moment requirements, but we will also impose stronger 
conditions on the memory of the process. 

A very general statement of the central limit theorem for stationary 
ergodic processes was given by Gordin [1969]. However, Gordin's 
conditions are not particularly easy to interpret. Here we adopt an 
approach suggested by Hannan [1973] that has somewhat greater 
intuitive appeal and is still quite general. 

To motivate the memory conditions that we add, consider a random 
scalar Z,, and let be a σ-algebra such that {Z,, g J is an adapted 
stochastic sequence, (Z, is measurable with respect to and C 
g , C g . ) We can think of as being the σ-algebra generated by the 
entire current and past history of Z, or, more generally, as the σ-alge-
bra generated by the entire current and past history of Ζ t as well as 
other random variables, say Vt. Given E\Zt\ < », we can write 

Zt = Zt - E{Zt\%t_x) + E{Zt\%t_x). 

Similarly, 

Ζ, = Z, - E(Zt\%t.x) + E(Zt\%t_x) - £ ( Z , | S , - 2 ) + £ ( Z , | g , _ 2 ) . 

Proceeding in this way we can write 

m— 1 

Z , = Σ *«, + £ ( Z , | S , - m ) , m = 1 , 2 , . . . , 

where fttj is the revision made in forecasting Z, when information 
becomes available at time / —j: 

n^EiZ^^-EiZ^^). 

Note that for fixed j 9 {fttj, is a martingale difference sequence, 
because it is an adapted stochastic sequence and 

= E[E(Zt\%t-j) - EiZ^t-j-Mt-j-,] 

= ElEiZ^t-Mt-j-Λ - ElEiZ^.j^m^] 

= E(Zt\%t.j.x)- E{Zt\%i-j-i) = 0, 

where we have applied the limearity property and the law of iterated 
expectations, Proposition 3.72. 

Thus we have written Zt as a sum of martingale differences plus a 
remainder. The validity of the central limit theorem we discuss rests 
on being able to write 
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In this form, Z, is expressed as a "telescoping sum," because adjacent 
elements of Uitj cancel out. Among other things, the validity of this 
expression requires that E(Zt\%t-m) tend appropriately to zero as 
m —• oo. Remember that E(Zt\%t_m) is a random variable, so the 
convergence to zero must be stochastic. In fact, the condition we 
impose is that 

E([E(Zt\%t-m)f)->0 as m - o o , 

which can be stated in terms of convergence in quadratic mean as 
defined in Chapter 2, i.e., 

£ ( Z , | g , _ J - ^ 0 as m - o o . 

One way of interpreting this condition is that as we forecast Ζ t based 
only on the information available at more and more distant points in 
the past, our forecast approaches zero (in a mean squared error 
sense). Further, this condition actually implies that E(Zt) = 0 as we 
prove below, so that as our forecast becomes based on less and less 
information, it approaches the forecast we would make with no 
information, i.e., the unconditional expectation E(Zt). 

LEMMA 5.14: Let {Z,, g ,} be an adapted stochastic sequence and 
suppose E(Zt\%t-m) 0 as m —> oo. Then E(Zt) = 0. 

Proof: By Theorem 2.40 E(Zt\%t-m) -^-— 0 as m — oo implies that 
E(\E(Zt\%t-m)\) — 0 as m — oo. Hence, for every e > 0 there exists 
M(e) such that 0 < E(\E(Zg\%t-m)\) < e for all m > M(e). By Jen-
sen's inequality, \E[E(Zt\%t.m)]\* £ ( | £ ( Z , | g , _ m ) | ) , so 0 < 
\E[E(Zt\%t-m)\\ < * for a 1 1

 Ή > M e ) . But by the law of iterated 
expectations, E(Zt) = E[E(Zg\%t-m)]9 so 0 < \E{Zt)\ < e. Since € is 
arbitrary, it follows that E(Zt) = 0. 

var Zt = 

Next, consider var Z,. Given that we can write 

it follows that if var Ζ, = σ2 < oo, then 
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-"£((""ΊΖ')!) 
- , - ' J £ ( Z ; ) + 2 r r L 2 J £<z.z,-,>. 

/ = 1 τ=1 ί=τ+1 
When Zt is stationary, /?τ = E(ZtZt-T)/a

2 does not depend on t. 

Hence, 

σ
2

η = σ
2
 + 2σ

2
η-> § ("~Φτ 

τ=1 

= σ 2 + 2σ 2 5 ) Λ ( 1 - τ / η ) . 
τ=1 

This last term contains a growing number of terms as η — », and 
without further conditions is not guaranteed to converge. It turns out 
that the condition 

2) (var ^ ) 1 / 2 < ° ° 
7=0 

is sufficient to ensure that ρ τ declines fast enough to ensure that σ2 

converges to a finite limit, say, σ 2, as η —*» and that this, together with 
stationarity and ergodicity, provides enough structure to obtain a 
central limit result. 

THEOREM 5.15: Let {Z,, 8/} be an adapted stochastic sequence 
such that {Z,} is stationary and ergodic with E(Z2) = σ2 < ». Sup-

Now for / < j , co\(fiti9 fttj) = 0 since 

cov(#„, ntj) = E(ntintj) = E[E(ntin^t^x)\ 

= E[3îiiE(Jîtj\Zt_j_l)] = 0. 

Hence var(E7=0 fttJ) = Σ". 0 var fttj, implying that 
00 

var Z, = 2 var < ». 
J=O 

In establishing the central limit result, it is necessary to have ö\ = 
var \fnZn finite. However, for this it does not suffice simply to have 
var Z, finite. Inspecting σ 2 , we see that 

σ
2
= η var Z„ 
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pose that £ ( Z 0 | S - J 0 a s m - œ and Σ ; β 0 (var n0j)
x,2<^. 

Then σ 2 — σ 2 < oo as « — oo, and i f* 2 > 0 , then JnZJö - N(0, 1). 

Proof: This follows as a corollary to Theorem 2 of Gordin [ 1 9 6 9 ] 

with Gordin's δ = 0 . 

Note that the stationarity property has been exploited to impose 
conditions on £ , (Z 0 | g_ m) alone rather than on £ ' (Z i | g i _ m) for all / and 
on X; = 0 (var n0j)

x'2
 alone rather than on Σ ^ 0 (var fttj)

x/2
 for all /. 

Applying Theorem 5 . 1 5 and Proposition 5.1 we obtain the follow-
ing result for the OLS estimator. 

THEOREM 5 .16 : Given 

(i) y = Xß0 + e9 

(ii) {(X,, €,)'} is a stationary ergodic sequence; 
(iii) (a) E(Xohieoh\%-m) 0 as m —> oo, where {g ,} is adapted 

to {X,A /€,A}, h = 1, . . . , Α ι = 1, . . . , k; 
(b) E\Xthieth\

2
<™h=l, . . . , p , / = l , 

(c) V n = var («" 1 / 2X ,€) is uniformly positive definite; 
(d) Define H m - E(Xohieoh\%-j) - E(Xohieoh\%.j.x\ h = 

1, . . . , p9 / = 1, . . . , k. For Λ = 1, . . . , ρ, i = 

1, . . . , Â:, assume that Σ^0 (var ft0hij)
m
 < °°· 

(iv) (a) £ | X , A l|
2
< o o , A = 1, . . . ,p,i= 1, . . . 9k; 

(b) M = E(X'tXt) is positive definite; 

Then \„ —• V finite and positive definite as Η — oo, and Ό~χ,24η(βη — 
ß Q ) ~ N(0,I), where D = M^VM" 1 . 
Suppose in addition that 

(v) There exists V„ symmetric and positive semidefinite such that 
y _ y -L>q 

η η
 ν

· 
Then D „ - D 0, where D „ = ( Χ ' Χ / , Ι Γ ^ Χ ' Χ / Λ ) - 1 . 

Proof: We verify the conditions of Theorem 4 . 2 5 . First we apply 
Theorem 5 . 1 5 and Proposition 5.1 to show that V" 1 /2 rr1/2 X'€ ~ N(0, 
I ) . Consider η~χ/2 Σ" β1 A'V~1 / 2X,'€,, where V is any finite positive 
definite matrix. By Theorem 3 . 3 5 , {Ζ, = λ ' V" 1 /2 X,'€,} is a stationary 
ergodic sequence given (ii), and {Z,, g , } is an adapted stochastic 
sequence because Z, is measurable with respect to % t by Proposition 
3 . 2 3 , and g , _ , C ^ C g . To see that £"(Z2) < oo, note that we can 



120 V. Central Limit Theory 

thi^th 
| 2 ) 1 / 2 J 

< [Δ/J/C Δ
1 / 2

]
2
 < » , 

since for Δ sufficiently large, is |X / Ä /€ / Ä| < Δ < » given (iii.b) and the 
stationarity assumption. 

Next, we verify that 2?(Z 0 |g_ m) — • 0. Using the expression for 
Z, just given, we can write 

ε([ε(ζ0\%-„)]2) = ε([ε( J ; χ A . X ^ i s ^ J ) 

= E [ { Σ Σ ^ a , x 0 A , € 0 A i s _ m ) } 2 ] . 

Applying Minkowski's inequality it follows that 

£ ( [ £ ( Z 0 | g _ m ) ] 2 ) < ·[ £ Σ (£[£a,.XO A,€O A|g_m)2])'/2]2 

s
 f

Δ
 Σ Σ (Ε[Ε(Χ0Μ€0Η\%-η,)

2
])

ι/2
\

2
· 

I Λ - 1 ι - l J 

Given assumption (iiia), it follows from Definition 2.3 (continuity) 
that the right-hand side of the expression above converges to zero as 
m—*». Since E([E(Z0\%-m)]

2
) is nonnegative, it follows that 

E([E(Z0\%_J]2) - 0 as m - », or £ (Z 0 |S_ J Ä 0. 

write 
Z, = >l , V- I / 2Xi€, 

= 2 λ'Ν-'/2Χ;Α€,Α 

A - l 

=
 Σ Σ ^i^thi^th-» 

Λ - 1 ι - l 

where Χ,· is the ith element of the A:X 1 vector X = V " 1 / 2A. By 
definition of λ and V, there exists Δ < » such that | A,| < Δ for all /. It 
follows from Minkowski's inequality that 
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= Δ Σ Σ Σ (™W2-
A - l i - l 7 - 0 

By assumption (iiid), Σ7°10 (var Ä 0 Ä ( /)
I / 2 < 0 0 for all h = 1, and 

i = l , . . . , / c , so, for Δ < » sufficiently large, Σ£. 0 (var # 0 A / y)
1 / 2 < Δ 

f o r A = l , . . . and i = l , . . . , / c . Thus 
00 

2 (var Äö j,-) I /2 < Δ2/?Α: < », 
>-o 

as we wished to show. 
By Theorem 5.15, it follows that 

var 4nZn = var ( , r I / 2 J ) A /V~ 1 / 2X;€ /) = A'V~ 1 / 2V„V~ 1 / 2/l — σ < ». 
/ - I 

Hence V„ converges to a finite matrix. Set V = lim,,..«, V„, which is 
positive definite given (iiic). Then & = X'Y~1/2W" 1 / 2A = 1. It then 
follows from Theorem 5.15 that n~l/2 Σ»_χ A'V- 1 / 2X,'€, ~ N(09 1). 
Since this holds for every λ such that λ'λ= 1, it follows from Proposi-

Now define 

n0j = E{Z0\%-j)- E{Z0\%_j-x). 

We need to show that Σ7°°=0 (var ft0j)
l/2
<*>. Since Z , = Σ£_, 

Σ^,Λ,Χ,/,,6,,,, we can write 

ρ
 k

 ~ 

A - l i - l 

Now (var ft0j)
l/2 =

 {Ε{31%))
ΥΙ
- It follows from Minkowski's inequal-

ity that 

( v a r A ^ ) " 2 ^ £ ( X 2 £ ( # 2

A , ) ) 1 / 2 

A - l i - l 

< Δ f Σ (var nohij)"\ 
A - l i - l 

Hence 

2 (var Λ ^ * ^ 2 Δ 2 Σ (var V ' 2 

7 - 0 7 - 0 A - l i - l 
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tion 5.1 that \-χι2η-χι2 Σ? β 1 X[et ~ N(0,I). Now 

v - i / 2 „ - i / 2 2 x; €, - \ - ^ n ~
l / 2

 2) Xi€, 

= ( v - ^ v 1 ' 2 - IJV-1/2«-1/2 2 x,'€, — o, 

since V" 1 / 2 V 1 / 2 - I is o( l ) by Definition 2.3 and V~ 1 / 2 «- 1 / 2 Σ? = 1 

Xfo ~ 7V(0, I), which allows application of Lemma 4.6. Hence by 
Lemma 4.7, V" 1 / 2>r 1 / 2X'€ ~ N(0,1). 

Next X'X/n — M — 0 by the ergodic theorem 3.34 and Theorem 
2.24 given (ii) and (iv), where M is finite and positive definite. Since 
the conditions of Theorem 4.25 are satisfied, it follows that 
Ό~ι/2Μβη -ßo) ~ N(0,1), where D„ s M - ^ M " 1 . Because D„ -
D —• 0 as η —> », it follows that 

D-^Mßn - ßo) - l>nl/2Mßn - ßo) 

= ( D _ i / 2D y 2 - i)O-^2Mßn -ß0)-o 

by Lemma 4.6. Hence, by Lemma 4.7, Τ>-χι24η(βη - ßQ) ~ N(0,1). 

Comparing this result with the OLS result in Theorem 5.3 for i.i.d. 
regressors, we have replaced the i.i.d. assumption with stationarity, 
ergodicity, and the memory requirements of (iii). Because these 
conditions are always satisfied for i.i.d. sequences, Theorem 5.3 is in 
fact a direct corollary of Theorem 5.16. Condition (iiia) is satisfied 
because for i.i.d. sequences E(Xohieoh\%-m) = 0 for all m > 0, and 
condition (iiid) is satisfied because Jîohij = 0 for all j > 0 and ftohij = 

Xohi^oh f ° r
 J

 = 0. Note that these conditions impose the restrictions 
placed on Ζ, in Theorem 5.15 for each regressor-error cross product 

Although the present result now allows for the possibility that X, 
contains lagged dependent variables y,_,, y,_ 2, . . . , it does not 
allow €, to be serially correlated at the same time. This is ruled out by 
(iiia) which implies E(X't€t) = 0 by Lemma 5.14. This condition will 
be violated if lagged dependent variables are present when et is serially 
correlated. Also note that if lagged dependent variables are present in 
X,, condition (iva) requires that E(y2) is finite. This in turn places 
restrictions on the possible values allowed for ß Q . 
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EXERCISE 5 .17 : Suppose that the model is y, = ß\yt-x + ßiyt-2 + 

State general conditions on {yj and (ßl9 ß 2 ) which ensure the 
consistency and asymptotic normality of the OLS estimator for ßx and 
A-

As just mentioned, OLS is inappropriate when the model contains 
lagged dependent variables in the presence of serially correlated 
errors. However, useful instrumental variables estimators are often 
available. 

EXERCISE 5 .18 : Prove the following result. Given 

(i) y = Xßö + e, 

(ii) {(Ζ,, X,, €,)'} is a stationary ergodic sequence; 
(iii) (a) E(Zohieoh\%-m) 0 as m — oo, where fö,} is adapted 

to {Zthi€th), h = 1, . . . , ρ, i = 1, . . . , /; 

(b) £ | Z , A /€ , A |
2
< o o , A = l , . . . , Α / = 1 , . . . , / ; 

(c) V„ = var(« 1 /2 Z'e) is uniformly positive definite; 
(d) Σ ; Β 0 (var ^ )

1 / 2
< o o , A = 1, . . . ,p, i= 1, . . . , / , 

where ftohij = E(Zohi€oh\^-j) ~ ^ ( Z ^ c j g . , . , ) ; 
(iv) (a) £]Z,A /X,A, | < oo, Λ = 1, . . . , ρ , i = 1, . . . , /, and; = 

1, . . . , k\ 

(b) 9 = £(Z; X,) has full column rank; 
(c) P„ Ρ finite and positive definite. 

Then V„ — V finite and positive definite as η —* oo, and Ol/2Jn(ffn — 
βο)±Ν(0,1\ where 

D = (Q'PQ^Q'PVPQiQ'PQ)- ». 

Suppose further that 

(v) there exists V„ symmetric and positive semidefinite such that 

v „ - v ^ o . 
Then D„ — D 0, where 

D„ - ( X ' Z P w Z ' X / , i V ( X ' Z / , i ) P ^ 

This result follows as a corollary to a more general theorem for 
nonlinear equations given by Hansen [ 1 9 8 2 ] . However, all the essen-
tial features of his assumptions are illustrated in the present result. 

Since the results of this section are based on a stationarity assump-
tion, unconditional heteroscedasticity is explicitly ruled out. How-
ever, conditional heteroscedasticity is nevertheless a possibility, so 
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efficiency improvements along the lines of Theorem 4.57 may be 
obtained by eliminating conditional heteroscedasticity or serial corre-
lation. 

V.4 Dependent Heterogeneously 
Distributed Observations 

To allow for situations in which the errors exhibit unconditional 
heteroscedasticity, or the explanatory variables contain fixed as well as 
lagged dependent variables, we apply central limit results for se-
quences of mixing random variables. A convenient version of the 
Liapounov theorem for mixing processes is the following. 

THEOREM 5.19 (Serfling; White and Domowitz): Let {Z,} be a 

sequence of mixing random scalars such that either φ(ηι) or α (m) is of 
size r/(r— 1), r> 1, with E(Zt) = μ,, var Ζ, = σ 2 , σ] Φ 0, and 
£ | Z , | 2 r< A < o o f o r a l R Defineσ\ η =var (« - 1 / 2Σ?+; + 1 Z,). Ifthere 
exists <72,_0 < σ 2 < », such that a\n —> a2 as η —• oo uniformly in a, 
then Jn(Zn - μη)/ση ~ N(0, 1), where σ 2

 = σ\η. 

Proof: The result for φ-mixing is proved by Serfling [1968]. The 
result for α-mixing is proved by White and Domowitz [1984]. 

Compared with the Liapounov central limit theorem 5.11, the 
moment requirements are now potentially stronger to allow for con-
siderably more dependence in Z,. Note, however, that if φ(ηι) or 
a(m) decrease exponentially in m, we can set r arbitrarily close to one, 
implying essentially the same moment restrictions as in the indepen-
dent case. 

The other major difference between Theorem 5.11 and the present 
result is the requirement that σ\η —• σ2 uniformly in a. Before, we 
only required a2 to eventually be bounded away from zero. Now, we 
are requiring σ 2

 w to converge to a nonzero constant as η —*
00 regard-

less of when we start the summation, i.e., regardless of the date of our 
first observation. Moreover, the speed of convergence cannot depend 
on the date of the first observation, since it must be uniform in a. 

That the <r2 approach a constant is a much stronger restriction on 
the heterogeneity of Z, than we needed to impose to obtain a law of 
large numbers. Essentially, we are imposing the requirement that Z, 
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be covariance stationary asymptotically. This still allows a good deal 
more heterogeneity than a covariance stationary process; however, 
there is much less potential for heterogeneity than if a2, were only 
required to be bounded away from zero. 

The analog to Exercise 5.12 is as follows. 

EXERCISE 5.20: Prove the following result. Given 

(i) y = XÄ> + €; 
(ii) {(X,, €,)'} is a mixing sequence with either φ(ηι) of size 

r'lix' — 1), r' > 1 or a(m) of size (r'/V — 1), r' > 1, where 
r' = r + δ for some r ^ 1 and δ > 0; 

(iii) (a) £(X,'€,) = 0; 
(b) E\Xthi€th\

2rf
 < Δ < ο ο for r ' > l , A = l , . . . ,p , / = 

1, . . . , / c , and all /; 
(c) = var(,r ^ Σ?+;+Ι Xfe), V„ s v 0„, and there exists 

V positive definite such that \ a n — V—>0asA2— 
uniformly in a; 

(iv) (a) E\X
2

thi\
f
 < Δ < » for r'l and all h = 1, . . . , p, i = 

1, . . . , k, and /; 
(b) Mn = E(X'X/n) is uniformly positive definite. 

Then D~l/2\Fn(ßn -ßQ) - N(0,1), where D„ = Μ" 1 ν , ,Μ" 1 . Suppose 
in addition that 

(v) there exists V„ symmetric and positive semidefinite such that 
v - v -^o 

Then Όη-Όη^0, where D„ = (Χ'Χ/η)~1 \n(X'X/n)-1. 

Compared with Exercise 5.12, we have relaxed the memory require-
ment from independence to mixing (asymptotic independence). De-
pending on the amount of dependence the observations exhibit, the 
moment conditions may or may not be stronger than those of Exercise 
5.12. We have also imposed the requirement that \ a n — V —> 0 as 
η —> oo, which is not needed in Exercise 5.12. If this condition were 
not imposed, Exercise 5.12 would be a direct corollary of the present 
result. 

The flexibility gained by dispensing with the stationarity assump-
tion of Theorem 5.16 is that the present result can accommodate the 
inclusion of fixed regressors as well as lagged dependent variables in 
the explanatory variables of the model. The price paid is an increase 
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in the moment restrictions, as well as an increase in the strength of the 
memory conditions. 

EXERCISE 5 . 2 1 : Suppose the model is yt =ßlyt_l +ß2*t where 
x, is a fixed scalar. Let X, = (y,_,, \ t ) and provide conditions on {(X,, 
€,)'} and (/?,, ß2) that ensure that the OLS estimator of ßx and ß2 is 
consistent and asymptotically normal. 

The result for the instrumental variables estimator is the following. 

THEOREM 5 .22 : Given 

(i) y = X A + €; 
(ii) {(Ζ,, X,, €,)'} is a mixing sequence with either φ(τη) of size 

r'/(r' — 1), r' > 1 or a(m) of size r'l(r' — 1), r' > 1, where 
r' = r + δ for some r ̂  1 and 0 < δ ^ r; 

(iii) (a) £ ( Z ; O = 0; 
(b) £ | Ζ / Α /€ ί Λ| 2 ^ < Δ < ο ο for r ' > l , A = l , . . . ,/?, / = 

1, . . . , /, and all t\ 

(c) ν ΰ Λ s var(>r 1 /2
 Sf+jVi Zfo, V„ = V0„, and there exists V 

finite and positive definite such that \ a n — V — 0 as 
η —> 0 0 uniformly in <z; 

(iv) (a) £ΊΖ, Α /Χ, Λ/ ' < Δ < oo for Γ Ί and all A = 1, . . . , / ? , * = 
1, . . . , / , ; = 1, . . . , / c , and/; 

(b) On Ξ £(Z'X/w) has uniformly full column rank; 
(c) P„ — P„ — 0, where {Pw} is 0 ( 1) and uniformly positive 

definite. 

Then Υ>-χ'24η(βη -ßQ) ~ 7V(0,1), where 

Suppose further that 

(v) there exists V„ symmetric and positive semidefinite such that 
V — v —0 

Then D„ — Dn — 0, where 

D„ = ( Χ ' Ζ Ρ ^ Ζ ' Χ / ^ Γ Κ Χ ' Ζ / ^ Ρ Χ Ρ ^ Ζ ' Χ / ^ ί Χ ' Ζ Ρ , , Ζ ' Χ / Α ΐ 2 ) - 1 . 

Proof: We verify that the conditions of Exercise 4 . 2 6 hold. First we 
apply Proposition 5.1 to show V - 1 / 2> T 1 / 2Z ' € ~ N(0, I). Consider 
AT 1 / 2 Σ?., A' V" 1 / 2Z;€,. By Theorem 3 .49 , A , V ~ 1 / 2Z /

/ € / is a sequence 
of mixing random variables with either φ(τή) of size r'l(r' — 1), r' > 1 
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or a(m) of size r'/(r'— 1), r'> I, given (ii). Further, 
EiX'y-wZfa) = 0 given (iiia), Ε\λ'\-

ι/2
Ζ',€,\

ν
 < A < °° for all / 

given (iiib), and if σ
2
„ = var(,r'/ 2 Ef+a"+1 λ'\-

ι/2
Ζ',€,)= λ ' \ ~

ι / 2 

\α„\~
ι/2
λ, we have σ

2

αη —* 1 uniformly in a by (iiic). It follows from 
Theorem 5.19 that n~

il2 Σ?_, λ'\-
ι/2
Ζ',€, ~ N(0, 1). Since this holds 

for every Α, λ ' λ = 1, it follows from Proposition 5.1 that v _ l / 2w _ l / 2 

Σ,"_, Z,'€,~;V(0,1). Now 

V - . / 2 „ - . / 2 2 z;e, - v-"2«-'/2 2 z;e, 

= (V;' / 2 V" 2 - I )V- ' / 2 / r ' / 2 2 z ; e , 0 , 
t= 1 

because V - I / 2V ! / 2 - I is o( l ) by Definition 2.3 and V- 1 ' 2 «" 1 ' 2 Σ? β 1 

Z'tet ~ N(0, I), which allows application of Lemma 4.6. Hence by 
Lemma 4.7, V - ^ / r ' j Z f c - 7V(0,1). 

Next, Ζ' X/n — Qn 0 by Corollary 3.48 given (iva), where {Q„} is 
O(l) and has uniformly full column rank by (iva) and (ivb). Since 
(ivc) also holds, the desired result now follows from Exercise 4.26. 

This result is in a sense the most general of all the results that we 
have obtained, because it contains so many special cases. Specifically, 
it covers every situation previously considered (i.i.d., i.h.d., and d.i.d. 
observations), although at the explicit cost of imposing slightly 
stronger conditions in various respects. Note, too, this result applies 
to systems of equations or panel data since we can choose ρ > 1. 

Finally, we remark that condition (ii) of Theorem 5.22 is actually 
stronger than necessary. Instead of requiring that Zt,Xt, and et be 
jointly mixing of the specified size, it would be sufficient to require 
only that {(Z,,X,)'} have φ(ηι) of size r/(2r — 1), r > 1 or a(m) of size 
r/(r — 1), r > 1 and {(Z,, €,)'} have φ(τή) or a(m) of size r'/(r' — 1), 
r' > 1. The condition imposed by (ii) becomes useful later in esti-
mating covariance matrices. 

V.5 Martingale Difference Sequences 

In Chapter 3 we discussed laws of large numbers for martingale 
difference sequences and mentioned that economic theory is often 
used to justify the martingale difference assumption. If the martin-
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gale difference assumption is valid, then it often allows us to simplify 
or weaken some of the other conditions imposed in establishing the 
asymptotic normality of our estimators. 

There are a variety of central limit theorems available for martin-
gale difference sequences. One version that is relatively convenient is 
an extension of the Lindeberg-Feller theorem 5.6. In stating it, we 
consider sequences of random variables {Znt} and associated σ-alge-
bras 1 < ί < where C g „ , and Znt is measurable with 
respect to g m . We can think of g n , as being the σ-field generated by the 
current and past of Znt as well as any other relevant random variables. 

THEOREM 5.23: Let {Znt, g m } be a martingale difference sequence 
such that σ

2

ηί = E{Z
2

nt) <™, o
2

nt Φ 0, and let Fnt be the distribution 
function of Znt. Define Zn = η~

χ Σ?= ι Znt and ö
2

n = var JnZn = n~
1 

Σ ? = \ σ Μ · If f ° r e v e ry 6 > 0 

then JnZJön~N(0, 1). 

Proof: This follows immediately as a corollary to Theorem 2.3 of 
McLeish[1974]. 

Comparing this result with the Lindeberg-Feller theorem, we see 
that both impose the Lindeberg condition, whereas the independence 
assumption has here been weakened to the martingale difference 
assumption. The present result also imposes a condition not explicit 
in the Lindeberg-Feller theorem, i.e., essentially that the sample 
variance n~1 Σ?_ ι Z2

t is a consistent estimator for a2. This condition 
is unnecessary in the independent case because it is implied there by 
the Lindeberg condition. Without independence, we make use of 
additional conditions, e.g., stationarity and ergodicity or mixing, to 
ensure that the sample variance is indeed consistent for a2. 

To illustrate how use of the martingale difference assumption allows 
us to simplify our results, consider the IV estimator in the case of 
stationary observations. We have the following result. 

and 
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THEOREM 5.24: Suppose conditions (i), (ii), (iv) and (v) of Exercise 
5.18 hold, and replace condition (iii) with 

(Hi') (a) £ , ( Ζ ί Α ί€ ί Α | δ ί _ 1 ) = 0 for all where {g ,} is adapted to 
{Z,A /€,A}, A = 1, . . . ,p , i = l , . . . , / ; 

(b) £ | z , A / € j 2 < o o , / * = i , . . . , / U = i , . . . , / ; 

(c) V„ = var(« 1 / 2Z'€) = var(Z,'€,) = V is nonsingular. 

Then the conclusions of Exercise 5.18 hold. 
Proof: One way to prove this is to show that (iii') implies (iii). This 

is direct, and it is left to the reader to verify. 
Alternatively, we can apply Proposition 5.1 and Theorem 5.23 to 

verify that \-
x/2
rr

x
'

2
Z'e~ N(0, I). Since {Z[et} is a stationary 

martingale difference sequence, var(«~ 1 / 2Z'€) = η~χ Σ?_ι 
E{Z't€t€'t Zt) = V, finite by (iiib) and positive definite by (iiic). Hence, 
consider AT

 1 / 2 XJL, λ ' V ^ Z f o . By Proposition 3.23, X'\-
x/2
Z't€t is 

measurable with respect to g , given (iii'a). Writing λ'\~
x/2
Z't€t = 

Σ£ = 1 Σ ^ XiZthi€th, it follows from the linearity of condition expecta-
tions that Ε(λ'\~ν

2
Ζ'ί€ί\%ί-ι)= Σ£_! Σ ^ XiE(Zthiethi\%t-l) = 0 

given (iii'a). Hence {k'\~
x,2
Z't€t, g , } is a martingale difference 

sequence. As a consequence of stationarity, var(A'V~ 1 / 2Z /

,€ i) = 
χy-mχχ-υ2λ = l f or a ll u a n d f or a ll u F̂  = / r t h e distribution 

function of λ' \~
l/2
Z'tet. It follows from Exercise 5.9 that the Linde-

berg condition is satisfied. Since {λ' \~
x,2
Z'tete'tZt\~

x,2
X) is a sta-

tionary and ergodic sequence by Proposition 3.30 with finite expected 
absolute values given (iii'b) and (iii'c) the ergodic theorem 3.34 and 
Theorem 2.24 imply 

n~
x
 J X'\-

x
'

2
Z'tete'tZt\-

x
'

2
X- λ ' \ -

χ
'

2
\ \ ~

χ
'

2
λ 

t= ι 

=n~
x 2 λ' ν - 1 / 2 z't€t€'t z , v ~

χ , 2
λ - 1 — 0. 

Hence, by Theorem 5.23 rr
x
'

2 Σ,"=1 À'\~
x/2
Z't€t ~ N(0, 1). It follows 

from Proposition 5.1 that \-
χ/2
η-

χ/2
Ζ'€ ~ JV(0,1), and since V = V„, 

\-
x/2
rr

x/2
Z'e ~ N(0,1). The rest of the results follow as before. 

Whereas use of the martingale difference assumption allows us to 
state simpler conditions for stationary ergodic processes, it also allows 
us to state weaker conditions on certain aspects of the behavior of 
mixing processes. To do this conveniently, we apply a Liapounov-
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like corollary to the central limit theorem just given. 

COROLLARY 5 .25 : Let { Z „ „ g m } be a martingale difference se-
quence such that E{Z

2

nt) = o
2

t Φ 0 and E\Znt\
2+s

 < A < oo for some 
δ > 0 and all /. If σ 2 > δ' > 0 for all η sufficiently large and n~l Σ?», 
Ζ2,, - ô\ — 0, then 4nZJö~ N(0, 1). 

iVoo/: Given £ΊΖ„,| 2 + <5 < Δ < oo5 the Lindeberg condition holds as 
shown in the proof of Theorem 5 .10 . Since σ 2 > δ' > 0 , σ~ 2 is O(l), 
so η~

χ Σ? =1 Ζ
2 J a

2
 — 1 = σ~

2
(η~

ι
 Z

2

t— σ 2) — 0 by Exercise 
2 . 3 5 . The conditions of Theorem 5 . 2 4 hold and the result follows. 

We use this result to obtain an analog to Theorem 5 .24 . 

EXERCISE 5 .26 : Prove the following. Suppose conditions (i), (iv), 
and (v) of Theorem 5 . 2 2 hold, and replace (ii) and (iii) with 

(ii') {(Ζ,, X,, €,)'} is a mixing sequence with either φ(ηί) of size 
r/(2r— 1), r ^ 1, or a(m) of size r/(r— 1), r > 1; 

(iii') (a) E(Zthi€th\î!ft-i) = 0 for all t, where {g ,} is adapted to 
{Zthi€th)9 h = 1, . . . , ρ, i = 1, . . . , / ; 

(b) E \ Z t h ie t h\
2 i r + S) < Δ < oo for some δ>0 and all h = 

1, . . . , / ? , / = 1, . . . , / and all t; 

(c) V„ = var(AT 1 / 2Z'€) is uniformly positive definite. 

Then the conclusions of Theorem 5 . 2 2 hold. 

Note that although the assumption (iiia) has been strengthened from 
E(Z[et) = 0 to the martingale difference assumption, we have weak-
ened the memory requirements from (ii) to (ii'), maintained the 
moment requirements of (iiib), and weakened the homogeneity con-
dition (iiic) to the requirement that V„ be 0 ( 1) and uniformly positive 
definite. No longer is \ n required to converge to some limit. 
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C H A P T E R VI 

Estimating Asymptotic 
Covariance Matrices 

In all the preceding chapters, we defined V„ = var(«~ 1 / 2X'€) or 
\ n = var(/?~1/2Z'€) and assumed that a consistent estimator V„ for V„ 
is available. In this chapter we obtain conditions that allow us to find 
convenient consistent estimators V„. Because the theory of estimat-
ing var(«~ 1 / 2X'€) is identical to that of estimating var(« _ 1 / 2Z'€), we 
consider only the latter. Further, because the optimal choice for P„ is 
V" 1, as we saw in Chapter IV, conditions that permit consistent 
estimation of V„ will also permit consistent estimation of P„ = V~ 1 by 
Ρ = V _ 1 

VI. 1 General Structure of \ n 

Before proceeding to look at special cases, it is helpful to examine 
the general form of V„. 

because we assume that E(n 1 / 2Z'€) = 0. In terms of individual 
observations, this can be expressed as 

An equivalent way of writing the summation on the right is helpful in 

V„ = var(«"1/2Z'€) = E(Z'ee'Z/n\ 
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This occurs when {(Z, ,€,)'} is an independent sequence or when {Z'ten 

g ,} is a martingale difference sequence for some adapted <r-fields g , . 
Case 2. The next case arises when cov(Z,'€ /9 Ζ,'_τ€,_τ) = 

cov(Z,'_T€,_T, Z,'€,)' = 0 for all τ ̂  m, 1 < m < », so ΩΛ is a (block) 
band diagonal matrix and 

\ n = n-^E{Z[€te[Zt) 

m—1 Λ 

+ « - ' 2 χ £(z;€,€;_tz,_T) + £(z;_T€,_t€;zt). 
τ = 1 ί = τ + 1 

This case arises when £ ,(Z, ,€jg i_ m) = 0 for 1 < m < °° and adapted 
σ-fields g , . A simple example of this case arises when Zt is nonsto-

We consider three important special cases. 
Case 1. The first case considered is when cov(Z,'e,, Ζ ί'_ τ€ /_ τ) = 

co\{Z[_T€t-T, Z'tety = 0 for all / Φ τ, so ΩΛ is (block) diagonal and 

The last expression reveals that V„ is the average of the variances of 
Z't€t plus a term that takes into account the covariances between Z[et 

and Ζ /

,_ τ€ ί_ τ for all t and τ. 
As we saw in Chapter IV, it is sometimes possible to express 

variances or covariances of eth as functions of the instrumental vari-
able candidates W,A. Under the conditions given by Exercise 4.55, we 
saw that we can express V„ as 

obtaining further insight. We can also write 
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chastic and €, is an MA(1) process, i.e., 

€f = av, + v,_!, 
where {v,} is an i.i.d. sequence with Ε ( ν,) = 0. Setting g t = σ(. . . , e,) 
it is readily verified that £(Z, '€,|S,_J = Z'tE(et\%t-m) = 0 for m > 2, 
implying that 

v„ = «-'2^(z;€ l € ('z () 

+ 2 ^(Ζίβ,β,'-,ζ,-,) + ^(Ζί . ,^- ,β ίζ , ) . 

Case 3. The last case that we consider occurs when {Zfo} is an 
asymptotically uncorrected sequence so that cov(Z,'e,, Ζ,'_τ€,_τ) = 
cov(Z,'_T€,_T,Z,'€,)' —• 0 as τ —• ». Rather than making direct use of 
the assumption that {(Z / 5 €,)'} is asymptotically uncorrected, we shall 
assume that {(Z,, et)'} is a mixing sequence, which will suffice for 
asymptotic uncorrelatedness. 

In this chapter we generally assume that the transformation Cn and 
therefore the elements of Ω Λ are unknown beyond the information 
specified in the three cases just discussed. If Ω„ were known, then it 
could be used directly in estimating V„. But more importantly, 
efficient estimation would be possible, as discussed in Section 3 of 
Chapter IV. The linear transformation involved in obtaining the 
efficient estimator then allows the covariance matrix to be obtained as 
a special instance of Case 1. In the following chapter we shall consider 
some situations in which the elements of Cn can be consistently 
estimated. 

VI.2 Case 1 : Ω „ (Block) Diagonal 

In this section, we treat the case in which 

ν π = Η - ' 2 £ ( ζ ; € ( €; ζ , ) . 
( = 1 

A special case of major importance arises when 

E(€Jh\Wlh) = a
2

0, 

E(elhetg\Wth, WTg) = 0, / φ τ, h Φ g, 



VI.2 Case I: Ω„ (Block) Diagonal 135 

so that 

v n = « - 1 i ( T ^ ( z ; z t ) = ^ L „ . 

Our first result applies to this case. 

THEOREM 6.1: Suppose V n = σ 2Ι^ , where a
2

Q < °° and L„ is O(l). 
If there exists d\ such that ö\ o\ and if Z' Z/n - L„ 0, then V„ = 
d

2

nZ'Z/n is such that V„ - V„ 0. 

Proo/; Immediate from Proposition 2.30. 

EXERCISE 6.2: Using Exercise 3.80, find conditions that ensure that 
öl ± σ

2 and Z'Z/,i - L„ ^ 0, where tf* = (y -X#,) ' (y - X$n)/(np). 

Conditions under which d
2

n —> a\ and Z'Zjn — L„ 0 are easily 
found from the results of Chapter III. 

In the remainder of this section we consider the cases in which {(Z,, 
X,, €,)'} is a stationary sequence and {(Ζ,, X,, €,)'} a heterogeneous 
sequence. We invoke the martingale difference assumption in each 
case, which allows results for independent observations to follow as 
direct corrollaries. 

The results that we obtain below are motivated by the following 
considerations. We are interested in estimating 

\ n = n-^E(Z[ete[Zt). 

If both Z, and et were observable, a consistent estimator is easily 
available from the results of Chapter III, say, 

For example, if {(Z,, €,)'} were a stationary ergodic sequence, then as 
long as the elements of Ζ,'ε,β,'Ζ, have finite expected absolute value, it 
follows from the ergodic theorem that V„— Vw 0. Of course, et is 
not observable. However, it can be estimated by 

l t = yt-Xtßn, 

where ß n is consistent for ß Q . This leads us to consider estimators of 
the form 
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As we prove below, replacing € t with et makes no difference asymptoti-
cally under general conditions, so V„ — \„ 0. These conditions 
are precisely specified for stationary sequences by the next result. 

THEOREM 6.3: Suppose that 

(i) y = XßQ + e, 

(ii) {(Ζ,, X,, €,)'} is a stationary ergodic sequence; 
(iii) (a) {Z,'€,, g ,} is a martingale difference sequence; 

(b) E\Zthieth\
2
<™h=l · . . , A / = 1 , - - -

(c) V„ = var(A2"1 /2Z /€) = var(Z,'e,) = V is positive definite; 
(iv) (a) E\ZthiX4

2
< oo, h= 1, . . . , A i = 1, . . . , /, j = 

(b) Q„ = E(Z'X/n) = E{Z'tXt) = Q has full column rank; 

(c) P„ P, finite and positive definite. 

Then V„ - V 0, and V" 1 - V" 1 0. 

Proof: By definition and assumption (iiia), 

V„ - V = ,r> 2 Ζ&Ϊ,'Ζ, - £(Z,'€A'Z,). 

We consider explicitly the case where ρ = 1 ; the extension to ρ > 1 is 
straight-forward but notationally cumbersome. Accordingly, we drop 
the h subscript in what follows. With ρ = 1, 

v„ - ν = Σ i2z;z, - £(e2z;z() 

= χ (y, - xA)2z;z, - £(€2z;z() 

= «-' 2 (e, - X,(& -A,))
2
Z,'Z, - E(e

2
Z'tZ.) 

= «-'2€2ζ;ζ,-^(€2ζ;ζί) 

-2«-2(Ä.-Ä>)'x:e,z,'z ( 

+ «-> 2 (Ä -Ä,)'X;X,(Ä -ßo)2iz,. 
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The result follows from Exercise 2.35 if each of the three terms in the 
last equation converges in probability to zero. 

Because the elements of Z't€te't Zt have finite expected absolute value 
by assumption (iiib), it follows from the ergodic theorem 3.34 that 

n~l 2 €?z;z, - £(€?ζ;ζ,) ^ o. 

Convergence in probability then follows from Theorem 2.24. 
Next consider 

2«- 1 2(Ä -Ao ) , x;e i z;z , 

This can be written as the sum of k matrices. The i,j element of the 
jcth term (κ = 1, . . . , k) in this sum can be written 

(L-ßoK)2n-l^XtKZtiZtjet 

under the conditions given (βηκ — βοκ) 0; further, 

£|Χ,ΚΖ„Ζ„€,Ι * E(\XtKZti\^E(\Ztj€^2 

by the Cauchy - Schwartz inequality. Since assumption (iva) guaran-
tees that 

E{\XtKZti\
2) < » 

and, by (iiib), 

E(\Ztjet\
2) < », 

it follows that 

E\XiKZtiZtjet\<™ 

so, by the ergodic theorem, 

n-x 2 X„cZ,Z„-€, - E(XtKZtiZtj€t) 0. 

This implies that 2n~l Σ?=1 XtKZtiZtjet is O p(l), so that 

\L-ßoK)2n-^XtKZtiZtjet^0 
/ = 1 

by Corollary 2.36. It follows from Exercise 2.35 that 

2«- 1 2 (A 1 -Ao ) , x;€ / z;z / -^o . 
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Finally, consider 

«-· £(Α-Α)'χ;χ,(Α-Α,)ζίζ,. 
This can be written as the sum of k2 matrices, where the ij element of 
the /c, Ath (/c, λ = 1, . . . , k) term has the form 

^ η 
(βηκ - βοκΧβηλ — βολ)Κ~

1
 Σ

 X
A c

X
f Ä i

Z
< T 

Under the conditions given, (βηλ — βολ) 0, λ = 1, . . . , k; further, 
the Cauchy-Schwartz inequality applies to yield 

E\XtKXaZtiZtJ\<^ 

given assumption (ivb), so, by the ergodic theorem, 

η 1 2) X / * X / ; I Z Î / z / / — ^(XiKXrAZ//Z(/) * 0 . 

This implies that n~
l
 Σ^ιΧίκΧίλΖίίΖυ is O p(l), so that 

(Ä»c ~ βοκ)(βηλ — βολ)
η
~

1
 Σ

 Χ
ί κ

Χ
/ λ

Ζ
ί /

Ζ
ί / 0 

by Corollary 2 . 3 6 . It follows from Exercise 2 . 3 5 that 

n-1 i {βη - /U'x;x,(Ä, - A>)z,'z, i 0. 

It follows that V n — V 0 by Exercise 2 . 3 5 . Since V is positive 
definite given (iiic), it follows from Proposition 2 . 3 0 that V" 1 — 

v-'^o. 
Comparing the conditions of this result with those of Theorem 5 .24 , 

we see that we have strengthened moment condition (iva) and that 
this, together with the other assumptions, implies assumption (v) of 
Theorem 5 .24 . An immediate corollary of this fact is that the conclu-
sions of Theorem 5 . 2 4 hold under the conditions of Theorem 6 . 3 . 

COROLLARY 6 .4 : Suppose conditions (i)-(iv) of Theorem 6 .3 

hold. Then Ώ~χ4η(βη - ß Q ) ~ N(0,1) where 

D = ( Q ' P Q ^ Q ' P V P Q i Q ' P Q ) 1 . 

Further, D„ — D 0, where 
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Proof: Immediate from Theorem 5.24 and Theorem 6.3. 

The usefulness of this result arises in situations in which it is 
inappropriate to assume that 

E(ejh\Wth) = al 

for example, when the errors obey an ARCH model (Engle [1982]), 
e.g., for ρ = 1, it is known that 

£(€?|W,) = Λ € ? - , +/> 2€?_ 2 + · · · + A€?- t , τ < oo. 

Note that W, must contain current and lagged values of X, and y,_, in 
this instance. 

The results of Theorem 6.3 and Corollary 6.4 suggest a simple 
two-step procedure for obtaining the efficient estimator of Proposition 
4.45, i.e., 

β* = ( X ' Z V ^ Z ' X r ' X ' Z V ^ Z ' y . 

First, one obtains a consistent estimator for β0, for example, the 2SLS 
estimator, 

βη = (X'ZiZ'ZJ^Z'XJ-'X'ZiZ'Z^Z'y, 

and forms 

v , = n - ' £ z & i i z , f 

where et = yt — Xtßn. Second, this estimator is then used to compute 
the efficient estimator β*. Because β* can be computed in this way, it 
is called the two-stage instrumental variables (2SIV) estimator, intro-
duced by White [1982]. Formally, we have the following result. 

COROLLARY 6.5: Suppose that 

(i) y = XÄ, + €; 
(ii) {(Z„ X,, €,)'} is a stationary ergodic sequence; 
(iii) (a) {Z'tet, g ,} is a martingale difference sequence; 

(b) E\Zthieth\
2
<™h=l, . . . , p , i = l , . . . ,/; 

(c) \ n = var(« 1 /2 Z'e) = var^e,) = V is positive definite; 

D„ = ( X ' Z i ^ Z W n X ' Z / ^ ^ 
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where lt= y , - X,&, βη = (Χ'ΖίΖ'ΖΓ'Ζ'ΧΓ'Χ'ΖίΖ'ΖΓ'Ζ'γ , 
and define 

ßt = (X'ZV-'Z'Xr'X'ZV-'Z'y. 

Then Ό-χι24η(βϊ ~ßo) ~ N(0,I), where 

D = (Q / V- 'Q) - 1 . 

Further, D w — D 0, where 

f)n = (X'Z\-
l
Z'X/n

2
)-

1
. 

Proof: Conditions (i)-(iv) ensure that Theorem 6.3 holds for βη. 
(Note that the second part of (iva) is redundant if X, contains a 
constant.) Next set P„ = V" 1 in Corollary 6.4. Then Ρ = V - 1 , and 
the result follows. 

This result is the most explicit asymptotic normality result obtained 
so far, because all of the conditions are stated directly in terms of the 
stochastic properties of the instrumental variables, regressors, and 
errors. The remainder of the asymptotic normality results stated in 
this chapter will also share this convenient feature. 

We note that results for the OLS estimator follow at a special case 
upon setting Ζ, = X, and that results for the i.i.d. case follow as 
immediate corollaries, since an i.i.d. sequence is a stationary ergodic 
martingale difference sequence when E(Z'tet) = 0. 

Analogous results hold for heterogeneous sequences. Because the 
proofs are completely parallel to those just given, they are left as an 
exercise for the reader. 

Define 

(b) Q„ = Ε(Ζ'XIή) = E{Z'tXt) = Q has full column rank; 
(c) L„ = Ε(Ζ' Ζ/ή) = £(Z;Z,) = L is positive definite. 

(iv) (a) 
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EXERCISE 6.6: Prove the following result. Suppose 

(i) y = XßQ + e, 

(ii) {(Ζ,, X,, €,)'} is a mixing sequence with either φ{πί) of size 
r/(2r— 1), r > 1, or a(m) of size r/(r— 1), r> 1; 

(iii) (a) {Z^€i? g ,} is a martingale difference sequence; 
(b) E\Zthieth\

2(r+0)
 < Δ < » for some δ>0 and all A = 

1, . . . / = 1, . . . , / , andi; 
(c) V„ = v a r ( « " 1 / 2Z / € ) is uniformly positive definite; 

(iv) (a) E\ZthiXthj\
2
^ < Δ < oo for some δ> 0 and all A = 

I, . . . , p , i = l , . . . ,IJ=U . . . ,k,andt', 

(b) Q„= E(Z'X/n) has uniformly full column rank; 
(c) Pn — Pn —• 0, where {P„} is 0 ( 1 ) and uniformly positive 

definite. 

Then V„ - V„ 0 and V" 1 - V" 1 0. 

EXERCISE 6.7: Prove the following result. Suppose conditions 
(i)-(iv) of Exercise 6.6 hold. Then O-

l
<

2
Jn(ßn - ßQ) ~ 7V(0,1) where 

D* - (Q^Q-r'QiP-V-Pi.Q.iQiPi.Qi.r 

Further, D„ — D„ 0, where 

D„ = ( X ' Z Î ^ Z ' X / H
2
) - H X ' Z / , 2 ^ ^ 

EXERCISE 6.8: Prove the following result. Suppose 
(i) y = X Ä , + €; 

(ii) { ( Z „ X , , €,)'} is a mixing sequence with either </>(m) of size 
r(2r — 1), r > 1, or a(m) of size r/(r— 1), r > 1; 

(iii) (a) {Z, '€ F, g ,} is a martingale difference sequence; 
(b) E\Zthieth\

2(r+S)
 < Δ < oo for some δ>0 and all h = 

1, . . . , / ? , / = 1, . . . ,/ , andi; 
(c) v„ = v a r ( « " 1 / 2Z / € ) is uniformly positive definite; 

(iv) (a) E\ZthiXthj\*
r+
» < Δ < oo and E \ Z t h i\

2
^ < Δ < », for 

some δ > 0 and all A = 1, . . . , p , i = 1, . . . , /, 7 = 
1, . . . , / c , and /; 

(b) Qn — E(Z'X/n) has uniformly full column rank; 
(c) L„ E(Z'Z/n) is uniformly positive definite. 

Define 



142 VI. Estimating Asymptotic Covariance Matrices 

where €, = y, - XtßnJn ~ (Χ'ΖίΖ'ΖΓ'Ζ'ΧΓ'Χ'ΖίΖ'ΖΓ'Ζ'γ, and 

ßt = (X'ZV-'Z'X)-»X'ZV-'Z'y. 

Then Ό~ι/2\Γη(β* — β0) ~ N(0,I), where 

Further, D„ — D„ 0, where 

D ^ C X ' Z V - ' Z ' X / « 2 ) " 1 . 

This result allows for unconditional heterogeneity not allowed by 
Corollary 6.5, at the expense of imposing somewhat stronger memory 
and moment conditions. Results for the independent case follow as 
corollaries because independent sequences are φ-mixing sequences for 
which we can set r = 1. Thus the present result contains the result of 
White [1982] as a special case but also allows for the presence of 
dynamic effects not permitted there, as well as applying explicitly to 
systems of equations or panel data. 

VI.3 Case 2: Ω „ (Block) Band Diagonal 

Here we treat the case in which, for m < <», 

V„ = K - 2£(z;€(e;z,) 

+ 2 ^(Zfeei- iZ,- , ) + Εφ,-Α-Ά) 

+ · ' · 

η 

+ η
 1 2 E(Z't€t€'t-m+lZt_m+l) + E(Z't_m+ , € / _ m + 1€ /

, Z / ) 

- / r ' 2£(z;e,€;z,) 
/ = 1 

w — 1 Λ 

+ « - ' 2 Σ £(ζ;€(€;_τζ(_τ) + £(ζ;_τ€,-τ€;ζ(). 
τ = 1 /=τ + 1 

Throughout, we shall assume that this structure is generated by a 
knowledge that E(Z't€t\%t-m) = 0 for 1 < m < » and adapted σ-fields 
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g , . The other conditions imposed and methods of proof will be nearly 
identical to those of the preceding section. We consider estimators V„ 
of the form 

ν„ = «-'Σζ;£,ί;ζ, 
m

 —
 1 η + Σ Ζ & ϊ ί - Α - τ + Ζ,'-Λ-Α'Ζ.· 

τ - 1 ί -τ + 1 

It turns out that V„ — V„ 0 under general conditions, as we now 
demonstrate. 

THEOREM 6.9: Suppose that 

(i) y = XÄ, + €; 
(ii) {(Ζ,, X,, €,)'} is a stationary ergodic sequence; 
(iii) (a) £(Z , '€, |g,_ J = 0 for 1 < m < oo and adapted σ-fields g , ; 

(b) £ΊΖ ί Λ /β ί Α|
2 < oo, Λ = ι, . . . , / ? , / = 1, . . . , / ; 

(c) \ n = var(«~ 1 / 2Z'c) = V is positive definite; 
(iv) (a) E\ZthiXthj\

2 < °°, Λ = 1, . . . , /?, / = 1, . . . , /, 7 = 

(b) Q„ s E(Z'X/n) = £(Z;X,) ^ Q has full column rank; 
(c) P„-^ P, finite and positive definite. 

Then V„ - V 0 and V" 1 - V" 1 0. 

Proo/: By definition and assumption (iiia), 

^η - V = n-> J Z&i,'Z, - E(Z'tete'tZt) 

m— 1 Λ 

+ « - ' 2 X [z&i;_ Tz,_ r-£(Zi€, e;_ Tz,_ t) 
τ = 1 /«=τ+1 

+ z;_T£,_Ti;z, - £(Ζ,_Λ-Λ'Ζ()]. 
If we can show that 

£ z&i;_ rz,_ t 
ί=τ+1 

- £(Z;e,€;_ tZ,_J ^ 0, τ = 0, . . . , m - 1, 

then the desired result follows by Exercise 2.35. As before, we con-
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sider explicitly the case ρ = 1 and drop the h subscript. With ρ = 1, we 
have 

AT 1 Χ Z;I,£,_TZ,_T-£(Z;€,€,-TZ,_T) 
/ = Τ+1 

= {{η-τ)Ιή)(η- τ)"
1
 £ 11-^',Ζ,_τ-E(e,et̂ Z'tZt_z). 

For τ = 0, . . . , m — 1, we have ((η — τ)/η) —> 1 as « —• °°, so it 
suffices to show that for τ = 0, . . . , m — 1, 

( « - τ ) " 1 2 Μ,-ΤΖ,'Ζ,-,-^Μ,-,Ζ,'Ζ,^Ο. 
/=Τ+1 

Because β, = y, — X,/?„, we have 

(η — τ)"1 J ) i , i , _ TZ;Z,_ T-£ (€A- TZ;Z,_ T) 
/ = Τ + 1 

= ( « - τ ) - ' J) €A_TZ;Z,_T - £(e,€,_TZ,'Z,_T) 

- ( « - τ ) " " Χ (Ä,-Ä,)'X f'e,_rZ;Z,-T 

/=Τ+1 

- ( « - τ ) - ' J (Α,-Α),ΧΊ-Τ«ΊΖΙ'ΖΊ_Τ 

+ ( « - τ ) - » i (ßn-ß0)Xix,_tä-ß0yzp.l_t. 
ί=τ+1 

The proof now proceeds identically to that of Theorem 6.3, and the 
result follows by showing that each term above converges in probabil-
ity to zero. Note that Theorem 3.35 is invoked to guarantee that the 
summands involved are stationary and ergodic and that the Cauchy-
Schwartz inequality is applied exactly as in the proof of Theorem 6.3 to 
guarantee the finiteness of the relevant expectations. 

Results analogous to Corollaries 6.4 and 6.5 also follow similarly. 

COROLLARY 6.10: Suppose conditions (i)-(iv) of Theorem 6.9 
hold. Then D" l/2Jn(jfn - ß0) ~ 7V(0,1), where 

D s (Q'PQ^Q'PVPQCQ'PQ) 1 . 
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+ « - ' 2 Σ z;e,e;_Tz;_r + z;_t€(_riiz„ 
τ = 1 ί=τ+\ 

where €, = y - Xtßn, ßn s (Χ'ΖίΖ'ΖΓ'Ζ'ΧΓ'Χ'ΖίΖ'ΖΓ'Ζ'γ , and 
define 

jSJ = ( X ' Z V - ' Z ' X ^ X ' Z V ^ Z ' y . 

Then Ό-χΐ24η{βϊ ~ ßo) ~ N(091), where 

D = ( Q V
1

Q )
1

. 

Further, D „ — D 0, where 

Όη = (Χ'Ζ\-
χ
Ζ'Χ/η

2
)-

χ
. 

Proof: Conditions (i)-(iv) ensure that Theorem 6.9 holds for βη. 
Set Pn = V " 1 in Corollary 6.10. Then Ρ = V " 1 and the result follows. 

Results for mixing sequences parallel those of Exercises 6.6-6.8. 

Further, D „ — D 0, where 

D „ = ( X ' Z P „ Z ' X / H
2

) - ^ X ' Z / ^ ^ ^ 

Proof: Immediate from Exercise 5.18 and Theorem 6.9. 

COROLLARY 6.11: Suppose that 

(i) y = X Ä , + e; 
(ii) { (Ζ, , X , , €,)'} is a stationary ergodic sequence; 
(iii) (a) £ ( Z ; € , | g , _ J = 0 for 1 < m < » and adapted σ-fields g , ; 

(b) £ | Z , A / e , A | 2 < o o , A = 1, . . . , p , / = l , . . . , / ; 
(c) V„ ~ v a r ( « " , / 2Z , € ) = V is positive definite; 

(iv) (a) £ | Z I A /X , A , |
2
 < » h = 1, . . . , p, / = 1, . . . , /, ; = 

1, . . . , k, and E\Zthi\
2 < », A = 1, . . . , p , i = 

1, . . . , / ; 
(b) Q „ = £(Ζ' Χ / Λ ) = E{Z[Xt) = Q has full column rank; 
(c) L„ = E(Z' ZI ri) = E{Z't Zt) = L is positive definite. 

Define 

v„ = , r ' £z&<z, 
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EXERCISE 6.12: Prove the following result. Suppose 

(i) y = X/?0 + €; 
(ii) {(Ζ, , X,, €,)'} is a mixing sequence with either φ{ηί) of size 

r'l(r' - 1), r' > l ,ora(m)ofsizer7(r' - 1), rf > 1, wherer' = 
r + δ for some r > 1 and δ > 0; 

(iii) (a) £(Z , '€, |g,_ J = 0 for 1 < m < » and adapted σ-fields g , ; 
(b) £ | Z i A /€ j 2 r' < A < o ° f o r r , > l a n d a l l A = l, . . . ,p,i = 

1, . . . , /, and 
(c) ν ΰΛ s var(«" 1 /2 Σ?ΐβ"+1 Zfe), V„ = V0„, and there exists 

V finite and positive definite such that \ a n — V —> 0 as 
« —• 0 0 uniformly in a; 

(iv) (a) £|Z,A,X,A,|
2'' < Δ < o° for r' > 1 and all A = 1, . . . , p, 

/ = 1, . . . , / , ; = 1, . . . , / c , and/; 
(b) Q„ = E(Z'X/ri) has uniformly full column rank; 
(c) P„ — P„ 0, where {P„} is 0 ( 1) and uniformly positive 

definite. 

Then V„ - V„ ^ 0 and V" 1 - V" 1 — 0. 

EXERCISE 6.13: Prove the following result. Suppose conditions 
(i)-(iv) of Exercise 6.12 hold. Then D " 1 ' 2 ^ ^ - β0) ~ N(09 I), 
where 

D„ - (Q'nPnQnr
 l

Q^n\nPnQn(QnPnQn)-

Further, D„ — D„ 0, where 

D„ = ( Χ ' Ζ Ρ „ Ζ ' Χ / Α Ζ
2
Γ Κ Χ ' Ζ / Η ) ^ 

{Hint: apply Theorem 5.22.) 

EXERCISE 6.14: Prove the following result. Suppose 

(i) y = XßQ + e, 

(ii) {(Ζ, , X,, €,)'} is a mixing sequence with either <f)(m) of size 
r'/(r' - 1), r' > 1, ora(m)ofsizer'/(r' - 1), f > 1, where r' = 
r + δ for some r ^ 1 and δ > 0; 

(iii) (a) £(Z;€,|g,_m) = 0 for 1 < m < oo and adapted σ-fields g , ; 
(b) ^ | Z i A /€ / A | 2 r ,< A < o o f o r r , > l a n d a l l A = l, . . . ,ρ,ι = 

1, . . . , /, and /; 
(c) Vfl„ s var(n- 1 /2 Σ?+;+1 Z,'€,), V„ ^ V0„, and there exists 

V finite and positive definite such that \ a n — V —• 0 as 
η —• 0 0 uniformly in Λ; 
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(iv) (a) E\ZthiXthj\
2r
' < Δ < oo and E\Zthi\

2
^ < A < oo for f > 1, 

and all h = 1, . . . , ρ, i = 1, . . . , /, j = 1, . . . , k, 

and ί; 
(b) Qn — E(Z'X/n) has uniformly full column rank; 
(c) L„ = E(Z'Z/n) is uniformly positive definite. 

Define 

v„ = / r ' 2 z ß i ; z , 

m— 1 /ι 

+ « - ' £ Σ z&2i_tz,_t + zi_Â-Tïiz., 
τ-1 / - T + l 

where e, = y, - X À , # , - (Χ'Ζ(Ζ'ΖΓ'Ζ'ΧΓ'X'ZiZ'ZJ-'Z'j;, and 
define 

/?î - ( Χ ' Ζ ν , , Ζ ' Χ Γ ' Χ ' Ζ ν - ' Ζ Υ 

Then Ό-ν2ΜβΪ -βα) ~ Ν(0,1), where 

Further, D„ — D„ 0, where 

D ^ C X ' Z V - ' Z ' X / « 2 ) - 1 . 

VI.4 Case 3: General Case 

In this section we consider the general case in which 

v„ = «-^£(z;É, e;z,) 

+ 2 £(Ζ,'€,€ί_τΖ,) + £ (Ζί_ Λ_ τ €ίΖ, ) . 

The essential restriction we impose is that as τ — oo the covariance 
between Z'tet and Ζ ί

/_ τ€ /_ τ goes to zero. This behavior is ensured by 
assuming that {(Z,, X,, €,)'} is a mixing sequence. In the stationary 
case then, we replace ergodicity with mixing, which, as we saw in 
Chapter III, implies ergodicity. 

The fact that mixing sequences are asymptotically uncorrected is a 
consequence of the following lemma. 
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LEMMA 6.15: Let Ζ be a random variable measurable with respect 
to S~+W, such that IIΖ II q = \E\Z\q\x,q < oo for some q > 1, and let 1 < 
r<q. Then 

ll£(Z|S^0O)-£(Z)llr<2[(/)(M)]1-1^IIZII<7 

and 

\\E(Z\$lœ) - £(Z)ll r< 2(2 1 / r + OlaiwM^-^IIZII^ 

Proo/: This follows immediately from Lemma 2.1 of McLeish 
[1975]. 

For mixing sequences, <f)(m) or a(m) goes to zero as m —• oo? So this 
result imposes bounds on the rate that the conditional expectation of 
Z, given the past up to period n, converges to the unconditional 
expectation as the time separation m gets larger and larger. 

By setting q = r = 2 for φ-mixing sequences and r = 2, q > 2 for 
α-mixing sequences, we obtain the following result. 

COROLLARY 6.16: Let E(Zn) = E(Zn+m) = 0 and suppose var Zn < 

oo, and for some δ > 0, E\Zn+m\
2+20 < oo. Then 

\E(ZnZn+J\ < 20(m)'/2(var ZJ^(var ZM + MY/ 2 

and 

|£(Z„Z„+J| < 2(2'/ 2 + l )a ( /w)^ + ^(var Zn)
x'2 

X(E\Zn+m\
2+2*y«2+2*\ 

Proof: By the law of iterated expectations, 

E(ZnZn+J = E(E(ZnZn+m\$l„)) 

= E(ZnE(Zn+m\Z!„)) 

by Proposition 3.65. It follows from the Cauchy- Schwartz inequality 
that 

\E(znzn+m)\ < E(ziy*E(E(zn+m\ai„)2y* 

By Lemma 6.15, we have 

Ε(Ε(Ζη+„\$1„)ψ2 s 20(m)"2(var Z B + J " 2 

and 

/ • ( £ ( Z „ + m| 3 u œ ) 2 ) " 2 < 2(2" 2 + l ) a ( / n ) ^ + ^ Z l , + J 2 + * ) 1 * 2 + 2 i> , 
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where we set q = r = 2 to obtain the first inequality and r = 2, q = 2 + 
2δ, δ > 0, to obtain the second inequality. Combining these inequali-
ties yields the final result. 

\E(ZnZn+m)\ < 2</>(m)'/2(var Z„)'/2(var 

and 

| £ ( Z „ Z „ + J | * 2(2"* + l)a(m)^ 2 + M>(var Z J " 2 

X(E\Z„+m\
2
+»)M+2s>m 

The direct implication of this result is that mixing sequences are 
asymptotically uncorrected, because φ(τη) —» 0 or a(m) —• 0 implies 
\E(Z„Zn+m)\ —> 0 as m — ». For mixing sequences, it follows that V n 

might be well approximated by 

νΛ = ,Γ'2£(Ζί€,€ίΖ,) 

+ « - ' 2 J; ^ ^ « , ' . , ζ , . ^ + ^ ζ , - Λ - ^ ί ζ » ) 
τ = 1 /=τ+1 

for some value /, because the neglected terms (those with Κτ^ή) will 
be small in absolute value if / is sufficiently large. Note, however, that 
if / is simply kept fixed as η grows, the number of neglected terms 
grows, and may grow in such a way that the sum of the neglected terms 
does not remain negligible. 

This suggests that / will have to grow with n, so that the terms in V„ 
ignored by V„ remain negligible. Actually, we require that Yn — \ n —• 
0 as η —• », and this turns out to require additional restrictions on the 
size of φ(?η) or a(m), as the next lemma demonstrates. 

LEMMA 6.17: Let {Zt} be a scalar sequence such that E{Zt) = 0 and 
£]Z,| 2+ 2"< Δ < oo for some η > 0, and all /. Define 

= /ι-'Σ£(ζ?) 

+ « - ' 2 Σ Ε{Ζ,Ζ,.τ) + Ε{Ζ,.τΖ,\ 

τ = 1 /=τ+1 
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W — 1 Λ 

,)l | σ 2 - σ 2 | < « - ' 2 Σ \Ε(Ζ,Ζ,.τ)\ + \Ε(Ζ,.τΖ, 

τ=7+1 /=τ+1 
by the triangle inequality, it suffices to show that 

n~x Σ Σ | £ ( Z , Z , _ T ) | - 0 as Λ - ο ο . 

τ=/+1 i=r+l 
By Corollary 6.16, we have 

\Ε(Ζ,Ζ,.τ)\ ^ 2</.(T)'/
2
(var Z,)"2(var Z,_ T)" 2 

and 

|£(Z,Z,_ t) | < 2(2" 2 + l)a(T)" / ( 2 + 2">(var Z,_ t)
1 / 2(£|Z I|

2 + 2") 1 /< 2 + 2">. 

Because Ε\Ζ,\
2+2η

 < A for all t by assumption, it follows that 

var Ζ, £Ξ [£|Z, | 2 + 2"] 2 / ( 2 + 2"> < Δ 1 / , +" 

for all t by Jensen's inequality. Hence 

|£(Ζ,Ζ Ι_ Ι) |<2<Α(τ) | / 2Δ 1Λ 1 +") 

and 

|£(Z,Z,_ t) ^ 2(2 1 /2 + ΐ)α(τ)«« 2 + 2 ,*Δ , Λ Ι + ,»>. 

Set Δ' = 2Δ,/<ι+"> and Δ* = ( 2 1 / 2 + 1)Δ'. Then 

and consider the approximation 

+ /!"'2 i E(Z,Z,-t) + E(Z,.TZ,). 

τ =1 /=τ+1 

If / —* oo as η —* oo and if either φ(τή) is of size 2 or a(m) is of size (2 + 
2η)/η, then σ 2 — σ 2 —• 0 as AI —• oo. 

Proo/? By definition, 

*2-<?* = /!-' "χ 2 Ε&,Ζ,-^ + Ε&,-,Ζ,). 

τ = / + 1 / = τ + 1 

Because 
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and 

η— 1 η 
η~ι Σ Σ | £ ( Ζ , Ζ , _ τ ) | < « - ' Σ Σ Δ*α(τ)"/(2+2">. 

τ = / + 1 ί=τ+1 τ = / + 1 ί=τ+1 

Now 

η'ι 2 Σ Δ'φ(τ) 1 /2 = Δ' 2 Φ(τ)ι/2(η~τ)/η 
τ = / + 1 /=τ+1 τ = / + 1 

Τ-/+1 
< Δ ' £ Φ(τ) Ι /2 

and 

η— 1 Λ 

, ι
~ ' Σ Σ Δ*α(τ)

η/(2+2η}
 = Δ * Σ α(τ)"

/ ( 2 + 2
">(Η - τ)/« 

τ~1+\ i=t+l T W + I 

< Δ * Σ α(τ)" / ( 2+2">, 

so that 

/ r ' Σ Σ l^(Z,Z(-T)|SA' ς Φ(τ)1 /2 

τ = / + 1 /=τ+1 τ = / + 1 

and 

η-χ Σ Σ | £ ( Ζ , Ζ , _ τ ) | ^ Δ * Σ α(τ)»/<2+2»>. 
τ = / + 1 /=τ+1 Τ - / +1 

If φ(τ) is of size 2, there exists Δ < oo sufficiently large such that φ(τ) < 
Δτ~ 2 - 2 <* for some δ > 0. Hence 

Σ φ ( τ ) ' / 2 < Δ Σ τ — ' 5 , 
T-0 τ = 0 

so that 

lim y φ(τ)
ι/2
 < lim Δ Υ τ~

ι
~

δ
 < °°. 

Σ Σ \m,zt-z)\^rri Σ Σ A'<t>w2 

τ = / + 1 ί=τ+ 1 τ = / + 1 /«=τ+1 
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Because 

Σ Φω 1 / 2 = ΣΦ(τ)Ι/2-ΣΦ(τ)ι/\ 
τ = / + 1 τ = 0 τ = 0 

it follows that if φ(τ) is of size 2, then 

n-l n-l I 

provided / —> oo as η —• oo. A similar argument establishes that, if α(τ) 
is of size (2 + 2η)/η, then 

n-l 
lim y α(τ)" / (2+2"> = 0. 

Hence 

« - § 2 | £ ( Ζ , Ζ , _ Τ ) | - 0 as « - o o , 
τ = / + 1 /=τ+1 

so \σ
2

η — σ
2

η\ — Ο as η —* ». 

The implication of this result is that, if / —* oo as « —• oo and either 
φ(ηι) or a(m) decreases sufficiently fast, then finding a consistent 
estimator for^V„ amounts to finding a consistent estimator for V„. 
The form of \ n is nearly the same as the form of V„ in the preceding 
section. The essential difference is that here / increases with n, 
whereas in the previous section, m is fixed. This means that the 
method of proof used in establishing the consistency of \ „ in the 
previous section no longer applies, because the result of Exercise 2.35 
does not apply to sums with a growing number of terms. Neverthe-
less, the estimator 

/= ι 

+ / r ' 2 2 ΖΙ'€,ΪΙ'_ΤΖΙ + Ζ;_Λ_Λ'ΖΙ 

is consistent for V„ (hence \ n ) provided that / does not grow too fast. 
The proof of the consistency of V n relies heavily on Lemma 6.19 
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below, which in turn requires a lemma closely related to Theorem 
3.49. 

LEMMA 6.18: Let gtT be a measurable function onto IR* for each t 
and τ and define Ζ, τ =£,T(%,,%,_ 15 . . . , %,_T), t = τ + 1,. . . . If 
the sequence of 1 X q vectors {%,} has mixing coefficients φ{ηϊ) and 
a(m), then {Z,T} has mixing coefficients φτ(τη) < φ(?η— τ) and 
aT(m) < a(m — τ) for m > τ and φτ(ηι) ^ 1, aT(m) < 1 for m < τ. 

Proo/? L e t ^ - a ( % a , . . . , %,) and let Sb

a = σ(Ζατ, . . . , ZbT). 
Define φτ(ιη)= sup„ φ(81Ο098^+ηι). Since g is measurable, S £ c 
g * _ T . It follows that φτ(ηί) < sup„ φ(%1„,%ΐ+„_τ), so 

The result for the a coefficients follows by replacing φ with a. 

In fact, Theorem 3.49 follows as a corollary to this result. 
The next lemma establishes an inequality which allows application 

of Chebyshev's inequality. It provides the key to proving the consis-
tency of V„. 

LEMMA 6.19: Let gn be a measurable function onto IR* for each / 
and τ, and define Ζίτ = gtT(%t, . . . , %,- T) , t= τ + 1, . . . . 
Suppose {%,} is a mixing sequence of 1 X q vectors with either φ(ηι) of 
size 2 or a(m) of size (2 + 2η)/η, η>0. If Ε\Ζίτ\

2+2η < Δ < °° and 
E(Zn) = 0 for all / and τ, then there exists Δ* < » independent of τ 
such that 

for m < τ, 
for m> τ. 

Proof: By the triangle inequality 

= 2 £ ( Ζ ? τ ) + 2 2 E(.ZnZ,_mz) 

η η—I η 

^ χ E&«) + Σ Σ l£(z„z,_ m T) | . 

By Corollary 6.16 

|£(Z„Z,_, Z,_ m T) | < 2<£t(m)'/2(var Z„)"2(var Z ,_ m i) ' / 2 
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ΟΓ 

\E(ZtTZt.mT)\ < 2 ( 2 " * + l ) a T (m)* 2 +^(var Z t . m ^ 2 

X (Ε\Ζίτ\
2+2ψ^\ 

where φτ(ηή and aT(m) are the mixing coefficients associated with 
{Z,T}. Since Ε\Ζίτ\

2+2η ^ Δ by assumption, Ε\Ζίτ\
2 ^ Δ 7 by Jensen's 

inequality, where Δ' = Δ 1 / ( 1 + , / ). It follows that 

E ( \ Σ Ζ * 1 % ( Λ - τ ) Δ ' + 2 Δ ' J Φ τ ( ^ )
1 / 2

( " - ^ ) 

or 

E(\ 2 Ζ, τ ) < ( « - τ ) Δ ' + 2Δ" 2 « Τ ( ^ / ( 2 + 2 , ? ) ( « -

where A" = ( 2 1 / 2 + 1)Δ'. Because Ztx = &T(%,, . . . , %,_T) it fol-
lows from Lemma 6.18 that φτ(ηή ^ <fi(m — τ) and aT(m) < a(m — 
τ). Substituting this into the expressions above and reindexing the 
summation gives 

E(\ 2 ztr \ ) ^(n-τ)Α'+ 2A'" Σ* φ(ΜΥ/2(η-ηι-τ) 

( L i - I ) 

or 

Ε 

2 ( « - τ ) Δ ' + 2Δ" 2 a(w)"« 2 + 2')(« - m - τ). 
m-= 1 

Because η — νη—τ<η — τ and because Σ ^ = 0 φ{ηϊ)υ2 < 0 0 when φ{νη) 
is of size 2 or Σ~ = 0 α(ιη)η/{2+2η) < 0 0 when is of size (2 + 2rç)/?7, it 
follows that 

4\ i z « % ( « - τ ) Δ * , 

\ Ι_ ί=τ+1 J / where either Δ* = Δ' + 2Δ' Σ"_ 0 φ{πί)χ'2 or Δ* = Δ' + 2Δ" Σ ^ . 0 

α(ηι)
η/(2+2η

\ 

The results for stationary mixing sequences follow as corollaries to 
the results for general mixing sequences, so we state only the results for 
general mixing sequences. 
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THEOREM 6.20: Suppose 

(i) y = X/?0 + £; 
(ii) {(Ζ,, X,, €,)'} is a mixing sequence with either φ(τή) of size 2 or 

ot(m) of size 2(r + <J)/(r + δ - 1), r > 1; 
(iii) (a) £(Z,'€,) = 0; 

(b) ^ Ζ , ^ 4 ^ < Δ < oo for some δ > 0, Λ = 1, . . . , ρ, 
/ = 1 , . . . , / , and all 

(c) \ a n = var^" 1' 2 Σ?+»+1 Zfe), V„ = V0„, and there exists 
V finite and nonsingular such that \ a n — V —• 0 as « —• 00 

uniformly in a\ 
(iv) (a) E\ZmXm\*

r+*> < Δ < oo for some δ > 0 and all A = 
1, . . . / = 1, . . . , / , ; = 1, . . . , fc, and/; 

(b) Q n

 Ξ E(Z'X/n) has uniformly full column rank; 
(c) P„ — P„ 0, where {P„} is O(l) and uniformly positive 

definite. 

Define V„ as above. If / —• °o as η —• oo such that / = o(nl/3\then V„ — 
V ^ O a n d V " 1 - V ' - ^ O . 

Proof: First we show that \ n — \ n 0 and then invoke Lemma 
6.17 to show that V n - V — 0, so that V„ - V 0 by Exercise 2.35. 

By definition, 

V„ - V„ = / r ' J ) Ζ&Ϊ,'Ζ, - E{Z'tete'tZt) 

τ = 1 /=τ+1 

+ z ;_ Ti , _ Ti ; z , - z< (ζ;_ τ€,_ τ€;ζ,)}. 

The first term, « _ 1 1 ? . ! Ζ,'ϊ,ΐΙ,'Ζ, — E{Z't€te.'tZt\ converges to zero in 
probability by an argument identical to that of Theorem 6.3, except 
that Corollary 3.48 is applied instead of the ergodic theorem 3.34. We 
note that because 2 > r/(2r — 1 ) for all r ̂  1, it follows that φ{πί) is of 
size r/(2r — 1) if φ{ιη) is of size 2 and because 2(r + £)/(r + δ — 1) > 
r/( r — 1 ) for all r > 1, it follows that a( m) is of size — 1) if a( m) is of 
size 2(r + S)/(r + S- 1). 

The desired result then follows if we can show that 

n~l Σ Σ Z&2Î-TZ,-T - £(ζ,'€,€;_ τζ,_ τ) ± ο. 
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Again we consider only the casejvhere P=J, and ignore the h 
subscript in what follows. Because et = y, — Xtßn, it follows that, with 

We show that each term on the right above converges to zero in 
probability by making repeated use of Lemma 6.19. 

Consider the first term and set Ζίτ= €,€,_τΖ,'Ζ,_τ — 
E(€tet-TZ'tZt_T). Letting %, correspond to (Z /,€,) it is straightforward 
to verify that the conditions of Lemma 6.19 hold, where η = r + δ — 
1. Hence 

by the implication rule (Proposition 2.26). By Chebyshev's inequal-
ity, we have 

From Lemma 6.19, £ ( [ Σ ? = τ +1 Ζ, τ]
2) < (π - τ)Δ* < «Δ*, so 
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which implies 

1 , - 1 Σ Σ Ζ,τ |^€ ΐ^Δ*/ 3 /€ 2 η. 
τ=1 /=τ+1 I J 

Since / = ο ( « 1 / 3) , it follows that Al
3
/e

2
n —* 0, which implies that 

/ η 
1 , - 1 Σ Σ €,€,-ΤΖ?ζ,-Τ-£(«,«,-ΤΖ;ζ,_ Τ)^ο, 

τ=1 ί=τ+1 
since 6 is arbitrary. 

Next consider 

Σ Σ (Α-Α) ,χ;«.-ΤΖΊΖ,-Τ· 
τ=1 ί=τ+1 

This can be written as the sum of k matrices. The /jth element of the 
Kth term (κ = 1, . . . , k) in this sum can be written as 

/ η 
(βηκ-βοκ)η~1

 Σ Σ
 Χ

/ κ
Ζ

ί /
Ζ

' - τ /
€
/ - τ 

τ=1 ί=τ+1 

=
 (Äut - βοκ)"

 1
 Σ Σ

 Χ
Ά

Ζ
* - τ /

€
ί - τ 

τ=1 /=τ+1 

— E{\tK7jti7jt_y€t-T) 

+ (βηκ-βοκ)η-ιΣ Σ ^(X i KZ„Z (_ r ; € (_ t) . 
τ = 1 / = τ + 1 

By argument analogous to that above, it follows from Lemma 6.19 
that 

1 n
 P 

n 1
 Σ Σ

 Χ
ί Λ Γ

Ζ
ί / '

Ζ
ί - τ /

€
ί - τ ~~ E(XtKZtiZt_Tjet-T) 0, 

τ=1 /=τ+1 

setting Ζ, τ = Χ,κΖ„Ζ,_τ >€,_τ - E(XtKZtiZt_ €,_τ) and letting %, 
correspond to (Ζ,, X,, € t). Since (β η κ — βοκ) — 0 under the conditions 
of the theorem, it follows from Exercise 2.35(ii) that 

o L Σ Σ Χ Α ^ , Λ Ο 
τ=1 ί=τ+1 

157 
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/ η 
(βηκ-βοκ)η-ιΣ Σ £ ( X , KZ „ Z , - t , € , _ t ) - 0 . 

τ = 1 ί=τ+1 

Multiplying and dividing by nl/2 gives 

$ηκ-βοκ)η-ιΣ Σ £(xAz,_„e,_T) 
τ =1 /=τ+1 

= ni'2(L-ßOK)n-V2J: Σ Ε{ΧίκΖαΖ,^€^). 
τ=1 ί=τ+\ 

Now the triangle inequality implies 

"- 3 / 2 Σ Σ E(XtKZtiZt.xj€t.T) 
τ = 1 /=τ+1 

< « - ^ Σ 2 |£(X1 ) CZ„.Z,_ t >€,_ t)|. 
τ = 1 ί=τ+1 

Given (iii.b) and (iv.b), Jensen's inequality and the Cauchy-Schwartz 
inequality ensure that there exists Δ' < °° such that 
|£(Χ,Ζ,/Ζ , -τ,€,-τ)Ι<Δ'. Hence 

" - 3 / 2 Σ Σ £ ( W N O 
τ = 1 /=τ+1 

<ΙΑ'η-ν2 

Since / = o ( «
1 / 3

) , the term above is o( 1 ). Since ηι/2(βηκ - βοκ) is Op( 1 ), 
it follows from Exercise 2.35(iii) that 

(βηκ-βοκ)η-ιΣ Σ ^ Χ Α Α - , ^ - ^ Ο ; 
τ = 1 /=τ+1 

so that 

η- 'Σ Σ (βη-βοΥΧ'Α-ΆΖ,-τ-Ο 
τ = 1 /=τ+ 

by Exercise 2.35(ii). 
Now consider 

«-•i i ( ^ - ^ ' χ , ' χ , - ^ - ^ ζ , ' ζ , ^ . 
τ =1 /=τ+ 

provided that 
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This can be written as the sum of k2 matrices where the /jth element of 
the κ, λ term (κ, λ = 1, . . . , k) has the form 

I n 

(βηκ~ βοκ)(βηλ~ βολ)
η
~

Χ Σ Σ Χ
/ Λ - τ Α

Ζ
/ /

Ζ
/ - τ 7 · 

τ = 1 ί=τ+1 

Argument analogous to that above shows that 
1 n

 ρ 
(βηκ-βοκ)η~

Χ Σ Σ Χ
/ Λ - τ Λ

Ζ
/ /

Ζ
/ - τ ; 0 

τ = 1 ί=τ+1 

and since βη β0, 

( L - ß O K) ( L - ß o ) " -
1 Σ Σ Χ Λ - Λ Λ - τ Λ ο 

τ = 1 1 
by Exercise 2.35(ii). It follows that 

«-· Σ Σ (Ä,-A)%%-T<Ä,-A,)z;z,_ t 

τ = 1 ί = τ + 1 

by Exercise 2.35(ii). ^Exercise 2.35(ii) now implies that V„ — V„ 0. 
By Lemma 6.17, V„ — V —* 0 under the conditions given, so that 

V „ - V - ^ 0 by Exercise 2.35(ii), and V - ' - V ' - ^ O from 
Proposition 2.27. 

This result says that V„ is consistent for V as long as / grows with n, 
but more slowly than ηχβ. Beyond this, the present result offers little 
guidance as to how to choose /, and the question of what the optimal 
growth rate for / might be is an interesting open question. White and 
Domowitz [1984] discuss an heuristically appealing way of choosing /; 
however, there is no evidence as yet to demonstrate that any way of 
choosing / yields an estimator of V which is a useful approximation in 
samples of the size typically available to economists. The present 
result is a "possibility theorem," since it shows that V can be consis-
tently estimated with very little structure imposed on the covariance 
structure of the regressors and errors. The practical usefulness of these 
results in applications has yet to be demonstrated. 

COROLLARY 6.21: Suppose the conditions of Theorem 6.20 hold. 
Then O-

l
'
2
Jn(ßn ~ ßo) ~ N(0,1), where 

D„ - (Q^QJ-'QIP^VP^IQIP^r !. 
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Further, D„ — D„ 0, where 

Proof: Immediate from Theorem 5.22 (set r' = r + S) and 
Theorem 6.20. 

This result is extremely general because it contains versions of all 
preceding asymptotic normality results as special cases while making 
very minimal assumptions on the error covariance structure. 

Finally, we state the general result for the 2SIV estimator. 

COROLLARY 6.22: Suppose 

(i) y = XÄ, + €; 
(ii) {(Ζ,, Xt ,€,)'} is a mixing sequence with either </>( m) of size 2 or 

a(m) of size 2(r + ô)/(r + δ — 1), r> 1; 
(iii) (a) £(Z,'€,) = 0; 

(b) £ | Ζ , Λ /€ , Λ |
4 ( Γ +

* > < Δ < ο ο for some δ> 0 and all h = 

1 , . . . , / ? , / = 1 , . . . , / , andi; 
(c) ν ^ ^ ν α τ ί ι ι - ^ Σ ΐ ΐ ί + , Ζ ί Ο , V„ = V 0 w, and there 

existsV finite and positive definite such that \ a n — V —• 0 
as η —• », uniformly in a; 

(iv) (a) E\ZthiXthj\«
r+v < Δ < oo and E\Zthi\

2^ < Δ < oo for 
some δ > 0 and all Λ = 1, . . . , /?, ι' = 1, . . . , /, and 
7 = 1 , . . . , fcfor ί; 

(b) Q„ = E(Z'X/n) has uniformly full column rank; 
(c) L„ = E(Z'Z/n) is uniformly positive definite. 

Define 

vw-«-' iz,'€,€;z, 

+ 2 Z & < _ r Z , _ t + Z;_ ti ,_ t£;Z„ 
τ =1 ι-τ+1 

where è, = y, - Xtßn, ßn = (Χ'ΖίΖ'ΖΓ'Ζ'ΧΓ'Χ'ΖίΖ'ΖΓ'Ζ'γ, and 
define 

0? ^ (X'ZV^'Z'Xr'X'ZV-'Z'y. 

If / — » as « — » such that / = o(« 1 / 2) , then 1/2Vrc(#? ~ ßo) ~ #(0 , 
I), where 
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Further, D„ - D„ 0, where 

D ^ i X ' Z V - ' Z ' X / / ! 2 ) - 1 . 

Proof: Conditions (i)-(iv) ensure that Theorem 6.20 holds for ßn. 
Set Pn = V~ 1 in Corollary 6.21. Then Ρ = V" 1 and the result follows. 
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C H A P T E R VII 

Efficient Estimation with Estimated Error 
Covariance Matrices 

In Chapter IV we saw that if C„ or the error covariance matrix Ω„ = 
CnC'n is known, then efficient instrumental variables estimators analo-
gous to GLS may be available. In most practical circumstances, Ω„ is 
unknown so the results of Theorem 4.57 are not immediately avail-
able. However, it is often assumed that the form of Ω„ is known up to 
a finite number of unknown parameters. Typically, sufficient infor-
mation is available to estimate these parameters consistently, and 
estimators analogous to the GLS estimator can be formed by replacing 
Ω„ with an estimator, say, Ω„. The purpose of this chapter is to 
examine some important special cases in which an asymptotically 
efficient estimator can be obtained by replacing Ω„ by Ω„. Because 
the cases we consider are covered by Theorem 4.58, we do not need to 
know C„. A general treatment in which the elements of Cn or Ω„ can 
be arbitrary known parametric functions of the data is beyond the 
scope of this book. 

Because results for OLS estimators follow as special cases from 
results for IV estimators, we consider only the latter. Results for 
independent observations will follow as corollaries to results for mar-
tingale difference sequences, and results for stationary processes will 
follow as corollaries to results for mixing processes. We treat only the 
mixing processes for economy of exposition and also because these 
allow inclusion of fixed (nonstochastic) instrumental variables and 
regressors whereas the stationarity assumption rules these out. 

162 
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VII. 1 General Results 

The estimators which are the focus of this chapter are the estimators 

β* = (X'ZiZ'Z^Z'XR'X'ZCZ'ZR'Z'y, 

where X = C~*X and y = C~ly, as in Section 3 of Chapter IV. To 
obtain easily stated results, we shall assume that the instrumental 
variables are given by Ζ = C~lZ for suitable choice of Z. For the cases 
we consider, this entails no real loss of generality. Thus we can write 

β* = ( ^ Ω - ' ^ Ζ ' Ω - ' Ζ Γ ' Ζ ' Ω ; ^ ^ 

We are concerned with the properties of the EGIV (estimated GIV) 
estimator 

β*η = ( X ' Ö - ' Z t Z ' Ö - ' Z ) - ' ^ ^ 

The fundamental result from which subsequent results follow is a 
simple extension of a result given by Theil [1971, p. 399]. 

THEOREM 7.1: Suppose that^the conditions of Theorem 4.57 hold 

with Ζ = C„Z. If there exists Cin such that 

(i) Z W - Ô - O i / ^ ^ O ; 
(ii) Ζ'(Ω'ι - Ω~ι)Χ/η ± 0; and 

(iii) Z W - Û ^ / n - O , 

then Jnißi-fi*)2* 0. Further, D„ - D„ 0, where 

D„ - (Χ'Λ-^ίΕ'ΰ-^/ΛΓ'Ε'Λ-'Χ/Λ2)-1, 

and the conclusions of Theorem 4.57 hold for β*. 
Proof: The result follows immediately from Lemma 4.29, where B„ 

contains the elements of Ζ'Ω~*€/{η, Ζ'Ω~*Χ/η and Ζ'Ω^Ζ/η and 
a n contains the elements of Z'ft-'i/Vw, Ζ'Ω^Χ/η and Z'Q~lZ/n. 

We consider three special cases. The first case is that of contempo-
raneously correlated errors and we obtain results for the standard 3SLS 
estimator as well as a useful estimator for panel data. In the second 
case, we consider a form of heteroskedasticity in which E{et€[) can 
take on a finite number of different values. In the third case, we 
consider serial correlation arising from a finite order vector autore-
gressive structure for the error terms. 
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VII.2 Case 1 : Contemporaneous 
Covariance 

For simplicity, we assume that the instrumental variable candidates 
are identical for all equations. Accordingly, let {W,} be the sequence 
of instrumental variable candidates, so E(€t\Wt) = 0. Because et 

exhibits no heteroskedasticity or serial correlation, we have 

£(€,€,'|W,) = I, t=l, . . . ,n, 

£(€,€; |W„W T) = 0, ί*τ=1, . . . ,n. 

Contemporaneous correlation is induced by a transformation 

€ , = C € , 

where c is a constant ρ Χ ρ matrix such that cc' = Σ. In this case we 
have E(et\Wt) = 0 because 

E(€t\Wt) = £(c€,|W,) = c £ (€,|W,) = 0. 

This implies that <T(W,) C <r( W , ) , where σ( W , ) is the σ-field generated 
by row vectors {W,} such that £'(€ i|W i) = 0, / = 1, . . . , n. But 
because c is nonsingular, 

£(€,| W,) = E(c-
l
et\%) = c-

l
E&\%) = 0, 

so <T(W,) C a(Wt). It follows that cr(W,) = a ( W , ) , that is, precisely 
the same instrumental variables are available for the nonspherical 
model as for the spherical model. 

Further, contemporaneous correlation only is induced because 

E(lït\\Vt) = E(cete'ic'\Wt) 

= c£(€ i€i |W /)c , = cc , = S 

and 

£(€,€;iw„ w T) = £(c€, €;c' iw„ w T) 

= c£ (€ r €; |W i ,W T) c ' = 0. 

In this case C„ = \ n ® c and Ω„ = CnC'n = (I„ Ο c)(Iw ® c') = 
ln (8) cc r = I ® X. 

Observe that in this case the instrumental variables candidates for 
the nonspherical model do not depend on the form of c. For this 
reason, a knowledge of Σ is all that is needed to construct the efficient 
estimator. 

Generally, however, Σ is unknown, so we must estimate it. If et 
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were observable, a natural estimator would be 

Of course, €, is not observable, but it can be consistently estimated 
by €, = y, — Xtßn for some IV estimator ßn. Replacing et with €, 
gives the estimator 

The next result specifies general conditions under which X„ is strongly 
consistent for Σ. 

PROPOSITION 7.2: Suppose that the conditions of Exercise 3 . 8 0 are 
satisfied for the model y = Xß0 + €, instrumentaljvariables Ζ and 
norming matrix P „ and suppose in addition that E\eth\

2(r+Ô) < Δ < » 
and E\XthJ\

2^ < A < » for some δ > 0 and all h = 1, . . . , A 7 = 
1, . . . , kandt. If 

E(ete't) = X t= 1, . . . , n, 

then X„ Σ, where 

and Î, = y, - X,ß„J„ = (X'ZP„Z'X)-'X'ZP„Z'y. 

Prao/? A typical element of X„ is given by n~l Σ"=ι e,hetg. Now 

Σ = Σ &* - X<»(Ä. - Α)χϊ* - χ * (Ä, - Ä>))' 

= ς «,*«., - Σ * A ( & - ä>) 

- «-* Σ (Ä - A)'X^rt + Λ " 1 Σ (Ä - ßo)'%%H$n - ßo) 

= «- Σ - («"' Σ 2 A ) ( ä -ä.) 

-(#,-&)'«-' Σ * Α 

+ ( Ä - Ä . ) , ( n - l i j Χ ; λ ) (ä - Α)· 
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We can apply Proposition 2.16 to this expression, so we consider each 
component in turn. 

By assumption (ii) of Exercise 3.80 and Theorem 3.49-, ethetg is a 
mixing sequence with </>(m)ofsize r/(2r — 1) or a(m) of size r/(r — 1), 
r > 1. By assumption, E(etnetg) = ahg, where X = [&hg]. Because 
E\etn\

2{r+Ô) is uniformly bounded, it follows from the Cauchy-
Schwartz inequality that E\etnetg\

r+Ô is uniformly bounded, so that the 
conditions of Corollary 3.48 are satisfied and 

η 
_i ^ ~ ~ a.s. n Zé^tg ¥0kg-

/ = 1 

An identical argument establishes that 

n-lj^X'tgitn is 0 , , (1 ) and 
t=\ 

« Η Χ Χ ; Λ is O a.,(l). 

Because ßn — ßQ 0 under the conditions of Exercise 3.80, it fol-
lows from Proposition 2.16 that 

n
 A A 

n~x Σ ^ Κ ^ 1 ^ <Jhg- 0 - 0 + 0 = ahg. 
t=\ 

Hence, Σ„ X. 

Note that X is consistently estimated using any choice of Ζ and P„ 
that satisfy the conditions of Exercise 3.80. It is not essential to choose 
Ζ = C„Z. Having a consistent estimator X„ available for X lets us 
estimate Ω„ by 

Ω„ = Ι<8>Χ„. 

With this choice for Ω„, we have the following result. 

THEOREM 7.3: Suppose that 

(i) y = XÄ + € 

and suppose there exists a unique σ-field generated by row vectors 
{W,}such that 

£(€,|W,) = 0 and 

E(et\St) Φ 0 for all St D <r(W,), t = 1, . . . , n\ 
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Ô„ = I<g>X„ 

Let 

£(€,€;|W,) = U = 1 , , . . , « ; 

£(€ f€; |W f,W T) = 0 , i ^ T - l , 

and define instrumental variables Ζ satisfying 

£(X,|W,) = Z,n o , '= 1, . . . 

where Π 0 is an / X Â: matrix of full column rank containing no zero 
rows. 

Let c be any finite nonsingular nonstochastic ρ Χ ρ matrix such that 
cc' = Σ. Define 

y, = cy„ X, = cX„ € = c€„ 

and let Z, = cZ,. 
In addition, suppose that 

(ii) {(Ζ,, X,, €,)'} is a mixing sequence with either φ{πι) of size 
r/(2r — 1), r > 1 or^a(m) of size r/(r — 1), r > 1; 

(iii) (a) for all J, ^ Z ^ ï ^ l ^ - j ) = 0, where { g , } is adapted 
to {Ztgieth}, g, h = 1, . . . , A / = 1, . . . , /; 

(b) for some δ > 0 and all g, h = 1, . . . , / ? , / = 1 /, 
and /, E\Ztgieth\

2(r+S) < A < » and % i A | 2 ( r + < 5) < Δ < oo; 

(c) V„ s var(«- 1 / 2Z r€) = var(AT'^ΖΏ"^) is uniformly pos-
itive definite; 

(iv) (a) ^ | Z / J
2 ^ ) < A < o o a n d ^ | X i A / ( r + < 5> < A < » f o r s o m e 

δ > 0 and all h = 1, . . . , ρ, / = 1, . . . , /, j = 

1, . . . , k, and t\ 

(b) Q „ = £ ( Ζ ' Χ / Λ ) and Q „ = E(Z'X/n) = Ε(ΖΏ-
ι
Χ/η) 

have uniformly full column rank; 
(c) L n = Ε{Ζ' Z/n) is uniformly positive definite. 

Define 

where 
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and define 

and 

ßt = (Χ'ΖίΖ'ΖΓ'Ζ'ΧΓ'Χ'ΖίΖ'ΖΓ'ΖΥ 

Then Mßt -ßt)Λ 0, O-l'2n-l'2(ßt -ß0) ~ Νφ, I ) , where D„ = 
(Qn^ '̂Q«)-1, and the conclusions of Theorem 4.57 hold for 
ßt. Further, D„ — D„ 0, where 

D„ ^ (Χ'Ο-'ΖίΖ 'Ω^'ΖΓ'Ζ'Ο-'Χ/ηΓ 1. 

Proof: We verify the conditions of Theorem 7.1. First consider 
Ζ ' ( Ω - ' - Ô-')€/V«. When Ω„ = I <8> X and Ω„ = I <8> X„ we have 

« - " 2 z w - Ω - ' ) ί = « - ' / 2 i z;(X-' - x - ' K . 

Let X-l = [<jgh] and Σ"1 = [of]. The ith element of >r 1 / 2Z' 
( Ω " 1 — Ω " 1 ) * can then be written as 

» - , / 2 i i Ε Ζ , > * Α - < ) € , Λ 

t-=\ g=\ h=\ 

= i i ( ^ A - ^ ) « - , / 2 i z i 8 , . ^ . 

We show that this converges in probability to zero by applying the 
result of Exercise 2.35(c) for products to each term in the double 
summation over g and h and then use the addition rule of Exercise 
2.35(b). 

First, we note that the conditions of Exercise 3.80 are satisfied for 
βη (choosing P„ = L"1 ) so that £„ - Σ 0 by Proposition 7.2. 
Hence, Xn - Σ 0 by Theorem 2.24, so that Σ"1 - Ϊ~ι±>0 by 
Proposition 2.27, that is, agh - âgh 0, g, h = 1, . . . p.̂  

Next consider «~ 1 / 2 Ζ^€ ί Α. Given (iii.a), {Ztgieth, g , } is 
a martingale difference sequence, so var(«~ 1 /2 Σ?«Ι Ztgieth) = n~l Σ{ί_Ι 
E{ Z2

tĝ k2

th ). By Chebyshev's inequality, 

p [ \"~ l / 2 Σ ^ Δ ] ^ v a r ^ - " 2 J) Ζ , ^ ) / Δ 2 

= «-12^(Ζ?,/€2

Α)/Δ
2. 

/-Ι 
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It follows from (iii.b) and Jensen's inequality that there exists Δ' < oo 
such that 

t=l 
so that 

/ > [ | Λ " ι ^ Σ 2 Λ | ^ Δ ] < Δ 7 Δ 2 . 

Because Δ can be chosen arbitrarily, it follows from Definition 2.33 
t h a t n - ^ S f ^ Z ^ i s O p i l ) . _ _ 

Exercise 2.35(c) then guarantees that (agh - dgh)n~l/2 Ztgieth is 
o p( l ) , so that 

g-l A - l i - l 

by Exercise 2.35(b). Hence, , r , / 2 Z W - Ω"')€ 0. 
Next consider Ζ'(Ω~ι - Ù~l)X/n. When Ω„ = Ι<8>Σ and 

Ω„ = Ι<8>Σ„, we have 

Z W - Ù~l)X/n = J ζ;(χ-' - Σ-')Χ,. 

The /, ßh element of this matrix can be written as 

f = l £ = 1 A - l 

= Σ Σ Σ 2 A -

Corollary 3.48 that 
As before, ogh — dgh 0. Further, given (ii) and (iv.a) it follows from 

n-> J) ZtgiXtnj - ε(η'ι Σ Ζ , Α , ) ^ 0, 

and because E(n~x Σ,"=1 ZtgiXtnĵ  isjO(l) by (iv.a) and Jensen's in-
equality, it follows that n~x Σ^, ZtgiXthj is Op( 1 ). As before, it follows 
from Exercise 2.35 that 

Σ Σ W - Οη~ι Σ 2 Α Λ ο, 
so that Ζ'(Ω-' - Ω^1 )Χ/η 0. 
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The proof that Ζ'ίΩ"1 - Cl^JZ/n 0 is exactly parallel to the 
proof just given, except that Zthj replaces % h j and the Cauchy-
Schwartz inequality ensures that E\ZtgiZthj[

r+6 < Δ, given (iva). 
The desired result follows, provided that the conditions of Exercise 

4.26 hold for Ζ, X, and €. For this, it suffices to show that the 
conditions of Exercise 5.27 hold for Z, = c - 1Z , , X, = c - 1X , , and €, = 
c _ 1 €,. This is tedious but straightforward and the details are left to the 
reader. 

To ensure the greatest comparability of results, the sufficient condi-
tions are stated in terms of the nonspherical model rather than the 
spherical model, with the exception of condition (i). There we could 
equally well have specified that the model is 

y = XA> + €, 

where 

£(i, |W,) = 0 

and 

£(€,€i|W,) = X, t = 1, . . . ,n 

£(£,i;|W,, WT) = 0, ί * τ = 1 , . . . ,n 

for suitable instrumental variable candidates W,, and Σ nonsingular. 
Then (i) follows for any nonsingular transformation c such that 
cc' = Σ. We state (i) in terms of the spherical model so that the 
optimal instrumental variables are easily characterized. 

Comparing the conditions of the present result with the analogous 
result of Exercise 6.8, we find two noticeable differences. The first is 
that, unlike assumption (iii) of Exercise 6.8, assumption (iii) of 
Theorem 7.2 imposes conditions on the relationship between the 
errors of equation h and the instrumental variables for equation g. Of 
course, this leads to no loss of generality in the present context, because 
we have assumed the same instrumental variable candidates are avail-
able for each equation. A second difference is that in (iv.a), 
£]Z,A /X,A/<

r + J> is no longer restricted but only E\Ztt}i\
2{r+S) and 

E\Xthj\
2(r+S). The former restriction was needed in estimating the 

robust covariance matrix of Chapter VI, but is not needed here. The 
latter restriction helps ensure that is consistent for Σ. 

To^keep the statement of this result relatively simple, we assumed 
that Ζ = C„Z was used to construct βη. However, it is easily seen from 
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the proof that any choice of Ζ satisfying assumptions (ii), (iii.a,b), 
and (iv) will suffice ^constructing βη. The choice Ζ = C„Z is crucial 
only in constructing β*. 

Theorem 7.3 contains results for a variety of useful estimators, in 
particular, general asymptotic normality results for Zellner]s [1962] 
seemingly unrelated regressions estimator (SURE) (set Ζ = X) as well 
as the three-stage least squares (3SLS) estimator (Zellner and Theil 
[1962]). The present result allows for the presence of both lagged 
dependent variables and nonstochastic variables in both the explana-
tory and instrumental variables. 

At the same time, the theorem also contains results for panel data 
sets in which one has a cross section of individuals and each individual 
occurs ρ times. In such cases, the matrix Σ often is assumed to have a 
more specific form as a result of an assumed variance components 
structure, that is, eth = ηίΗ + ν,, where ν, is an individual specific effect 
uncorrected with r\th and the specific effects for other individuals. It is 
typically assumed that E(r\2

th) = σ2, E(v2) = σ2, E(j\thvt) = 0, for all τ 
and h = 1, . . . , ρ, Ε(η^ητ8) = 0, t Φ τ, for all h and g, and 
E(vtvT) = 0, t Φ τ. This implies that 

EÇe2

h) = a2 + a2 

E(etheig) = G 2 , 

so that 

X = σ21 + σ*ιϊ, 

where t is the ρ X 1 vector ι' = (1, 1, . . . , 1). 
When such a structure has been assumed, estimators besides Xn = 

n~l ^%x€te[ are available, and if such an estimator is consistent, it can 
replace ΣΛ in the preceding result without affecting the validity of the 
conclusion.^ However, such estimators have no advantage asymptoti-
cally over ΣΛ, and because they impose additional restrictions that 
could be incorrect (e.g., r\th might have E(r\tgr\th) Φ 0), they can fail to 
be consistent for Σ, which leads to an inefficient estimator. 

VII. 3 Case 2 : Heteroskedasticity 

Often it may be unrealistic to assume that Σ is identical for all t. A 
somewhat more general assumption is that there is a finite number, 
say, G, of different groups, and that the variance within each group is 
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constant, say, Xy9 γ = 1, . . . , G. For example, in time-series, the 
errors may have different covariance matrices depending on whether 
the Democrats or the Republicans are in office, or whether the Federal 
Reserve is headed by a Keynesian or a monetarist. In panels, individ-
ual error covariance matrices may differ according to observable 
demographic characteristics (region, union membership, race, etc.). 
In either case, the heterogeneity can be viewed as arising from a 
transformation of an underlying spherical model such as 

where D Y, is one if observation t falls in group γ and is zero otherwise, 
a n d c y , y = l , . . . ,G are unknown finite nonsingular nonstochastic 
ρ Χ ρ matrices. If D,' = (du, D 2 , , . . . , dGt) is included among the 
instrumental variable candidates W , , then 

s o ^ ^ ) C cr(W,), where a ( W , ) is generated by { W , } such that 
£ ( € , | W , ) = 0. Because the c y, γ = 1, . . . , G, are nonsingular, and 
because [Σ<?=1 CYD^]

- 1 = [Σ^β1 c~%t], we have 

so <7(W,) C a ( W , ) . Hence, <J(W,) = <T(W,), that is, the same instru-
mental variables are available for both the spherical and the nonspher-
ical model, provided that D,' is included in W , . Note that in the second 
equality above, use is made of the fact that DY, is measurable with 
respect to <r(W,) because D,' is in a ( W , ) and a ( W , ) C a ( W , ) . 

The covariance structure of €, is given by 

€/ = M i , + c 2D 2/ + · · · + ο < Α ; , Κ 

£(€ί€,'|\ν,) = Σ Λ , + · · · + XGD ( 
and 

£(€ Ί€;Ι\ν ί,\ν τ) = ο,/^τ, 
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where Xy = cycy, y = 1, . . . , G. As in the previous case, the instru-
mental variable candidates do not depend on the form of cy and 
Theorem 4.58 applies, so a knowledge of Xy will suffice for constructing 
the efficient estimator. 

When Xy is unknown we can proceed by finding a consistent estima-
tor. A natural way to construct an estimator for 2 y is to average ete[ 
over only the observations in group y, that is, those observations for 
which άγί = 1, which gives 

*yn = "yl Σ Ayt*t*U y = 1, . . . , (/, 

where et = y, — Xtßn and ny = Σ?«ι άγί is the number of observations 
falling in group γ. Note that if the data have not been sampled in such 
a way as to ensure that a fixed number of observations belong to group 
γ, then ny must be treated as a random variable, and it is helpful to 
write %γη as 

%n = ( n~X Σ d * ) n~ l Σ Ayt*t*U y = 1, . . . , G, 

where we use the fact that DY,= D̂ . In this form, Χγη can be 
interpreted as the OLS regression of €te't on άγί. 

Given appropriate regularity conditions, it is straightforward 
to show that Χγη is consistent for Xy, as the following exercise asks you 
to verify. 

EXERCISE 7.4: Prove the following result. Define % n as above, and 
let jfn β0. Suppose that for γ = 1, . . . , G, 

(i) Πγ/η — Ε(ηγ/η) 0 and for all η sufficiently large 
Ε(ηγ/η)>δ>0; 

(ii) η-1 Σ».! D„ €,€j -E(dytcgc't ) - 0; 
(iii) {n~l Σ?.ι Dy,X^€,A} is O p(l) for A = 1, . . . , / ? , / = 

1, . . . , k\ ^ ^ 
(iv) {«"' Σ?_, D ^ X ^ } is O p(l) for g, h = 1, . . . , /?, ι, j = 

1, . . . , k\ 

Then Σ ^ - Σ ^ Ο , y = l , . . . , G. 

With this estimator for Χγ available, a natural estimator for ΩΛ is 

Ω„ = diag[eôH, ώ 2 2 , . . . , ώηη], 
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where 

ώ„ = %n&u + S 2 nd 2 / + · · · +XGndGn 

that is, ώη = Ê y n if observation / belongs to group y. 
This estimator is consistent and leads to efficient parameter esti-

mates under the conditions of the following result. Note, however, 
that in obtaining this result, it must be assumed not just 
that {Ζ^-β,Α, S,} is a martingale difference sequence, but also that 
[AytZtgieth, S,} is a martingale difference sequence. This means that 
the grouping does not occur in such a way as to affect the orthogonality 
between the instrumental variables and errors for observations within 
a given group. The following result does not hold (and should not be 
expected to hold) in situations in which E(Ztgieth) depends on which 
group the observation belongs to. Further, because 

G 

Ztgi€th = 2 àYtZtgi€th, 

the assumption that {dytZtgieth, g,} is a martingale difference sequence 
implies that {Ztgietn, g , } is a martingale difference sequence. 

THEOREM 7.5: Suppose 

(i) y = XÄ, + €; 

and suppose there exists a unique cr-field generated by row vectors 
{W,} such that 

E(et\Wt) = 0 and 

£ ( 6 , | 2 , ) φ 0 for all 8t D a{Wt\ t = 1, . . . , n\ 

£(€,€/|W,) = U = l , . . . 

£(€,€;|W,,WT) = < U * T = 1 , 

and define instrumental variables Ζ satisfying 

£(X,|W,) = Z , n o , i = l , 

where Π 0 is an / X k matrix of full column rank containing no zero 
rows. 

Let W, include d,' as defined above and let c y, y = 1, . . . , G be 
finite nonsingular nonstochastic ρ Χ ρ matrices such that c yc y = Xy, 
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G G G 

y/
 =

 Σ
 d

y /
c
y t t > X'

 =
 Σ

 d
y /

c
y

X
" ^

 =
 Σ

 α
Λ

€
" 

y = l 7=1 y = l 

and let Ζ, = Σ ^ = 1 d ^ Z , . 
In addition, suppose that 

(ii) {(d,, Z,, X,, €,)'} is a mixing sequence with either <f>(m) of size 
r/(2r — 1), r > 1, ora(m) of size r/(r — 1), r > 1; 

(iii) (a) for all ^£(d y lZ^€ / A|S , - i ) = 0, where { g , } is adapted to 
{dy,Z^£,A}, y= 1, . . . , G; g, h = 1, . . . , p, i = 
1, . . . , /; 

(b) £|Z,^€,A|
2<r+J> < Δ < oo and £|£,Α|

2<Γ+<5> < Δ < oo for 
some δ > 0, and all g, h = 1, . . . , ρ, i = 1, . . . , /, 
and /; 

(c) V„ = var(AT 1 / 2Z'€) = varfa-^Z'u- 1?) is uniformly 
positive definite; 

(iv) (a) £|Z,A /|
2< r + J> < Δ < oo and £|X,A, |

2 ( r +< J ) < Δ < oo for some 
J > 0 , and ail g, h = 1, . . . , p, i = 1, . . . , l,j = 
1, . . . , k, and t\ 

(b) Q rt = £(Z'X/«) and Q„ = E(Z'X/n) = Ε(Ζ'Ω-ιΧ/η) 
have uniformly full column rank; 

(c) L„ = E(Z'Z/ri) is uniformly positive definite. 

Define 

= Σ * 1 * ^ ^ 1 G» 

where « y = XjLi dy,, €r = yf — X,/?„ and 

& = ( X ' Z i Z ' Z ^ Z ' X ^ X ' Z i Z ' Z ^ Z ' y . 

Let 

0„ = diag[a>„,cö22, · · · ' 
ω „ Ξ Σ Λ , + · · · + X G d G „ 

and define 

Î2„ = diag[<ô n,eô 2 2, . . . , ώηn] 

&α - ïin&u + ^ 2 n d 2 i 4- · · · + 2G„dG„ / = 1, . . . 

so that 
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Let 

β* = (X 'ZtZ'Zr 'Z'Xr 'X'ZtZ'Zr 'Z'y . 

If E{ny[n)> δ> 0 for all η sufficiently large, γ= 1, . . . , G, 
then Jiiißt-ß*)2*^ Onl/2n-l/2ißt-ßo)-N(0, I ) , where D„ = 
( Q ^ V ^ Q J

- 1
, and the conclusions of Theorem 4.57 hold for 

β*. Further, D„ - D„ 0, where 

D„ - ( Χ Ό ^ Ζ ί Ε Ό ^ Α Γ ' Ζ Ό ^ Χ / ι ι ) - 1 . 

Proof: First, we verify the conditions of Exercise 7.4 and then we 
verify the conditions of Theorem 7.1. 

Given (ii), {dyt} is a mixing sequence satisfying the conditions of 
Corollary 3.48, γ = 1, . . . , G. (Note that because Ayt = 0 or άγί = 1, 
\dyt\

r+ô < 1 and £ |d y , |
r +y < 1 for any r + δ.) It follows that ny/n -

E(ny/n) = n~l Σ{!_, dyt — E(dyt) —* 0 by Corollary 3.48 and Theorem 
2.24. E(ny/n) > δ > 0 for all η sufficiently large by assumption. 

Given (ii), {dytet€'t} is a mixing sequence. By the Cauchy -
Schwartz inequality, E\ethetg\

r+0 < (£|€ i A|
2 ( r + < J )) 1 / 2(£|e i aJ

2 ( r + < 5>) 1 /2 < Δ 
by (iii.b). Then | d y , i , A i ^ = | d , , M € r t € j ' + ' * | € * € j ' + ' be-
cause |dy,| ^ 1, so that £ | d y /€ ^ € / A| r + J < Δ. It follows from Corollary 
3.48 and Theorem 2.24 that 

η-*Σά„1%-Ε{ά„€&)±0. 
t-l 

Next, given (ii), {dy,X,^€,A} is a mixing sequence. By the Cauchy-
Schwartz inequality, 

E\xJthr* * (£|X J ^ ' ^ l ^ l ^ ^ < Δ, 

given^(iiï.b) and (iv.a), and because | d y , | r + J^ 1, it follows that 
E\dytXtgieth\

r+0 < Δ. It follows from Corollary 3.48 and Theorem 
2.24 that 

n~x Σ D A A A - E(dytXtgieth) 0 

and from Jensen's ̂ inequality that \n~x Σ ^ E(dytXigieth)\ < A < o°; 
hence {n~{ Σ^ dy /X,^€ / A} is O p(l) for g, h = 1, . . . , ρ and / = 
1, . . . ,k. 

Finally, {n 1 Σ,^ι dytXtgiXtnj} is O p(l) by argument identical to 
that above with Xthj replacing eth. It follows from Exercise 3.80 
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that βη —• /?0 choosing Ρ Λ = L"1, so the conditions of Exercise 7.4 hold 
and %n — Χγ 0. 

We now verify the conditions of Theorem 7.1. Considering 
Ζ'(Ω~ ! — Ω"1 )e/yfn, for the form of Ω„ and Ω„ considered here we 
have 

Ζ ' <Ω- 1 - Ω;' )1ΐ4~η = n-^ £ Z ; ^ 1 - ( V 

Let ω"1 = [ω ft] and ώ ^ = [ώ§Α]. The /th element of 
Ζ'(Ω~* — Ω"1 )e/VÄ can be written as 

t=l g=\ A=l 

=«-,/2 i i i z«,(i κ - afn]dy)z„, 
/ = 1 # = 1 A=l \y=l / 

because = Σ^ = 1 ofdy, and ώ*Α = Σ^ = 1 <7fAd y„ with X71 = [of] 
and Σ"1 = [of]. Interchanging the order of summation, we have 
the /th element of Ζ'(Ω~ ! — Ù~l)e/Jn given by 

/ = 1 £ = 1 A=l 

= i i i « - 0 " _ , / 2 i ««λ^· 
y=l g=l A«l f=l 

The argument now proceeds identically to that of Theorem 7.3. 
Because %ηγ — Σ 7 0, it follows from Proposition 2.27 that σ*Α — 
<rfA-^0, 7 = 1 , . . . , (7, g, A = 1, . . . , g. The Chebyshev 
inequality applies to show that n~l/2 Σ?=1 dytZtgieth is Op( 1 ). Applica-
tion of Exercise 2.35(c) and (d) then yields that, element by element, 

z w - ô - o i / V ^ - o . 
Similar arguments establish that Ζ'(Ω~* — ù~l)X/n 0 and that 

It remains to verify that the conditions of Exercise 4.26 hold under 
the assumptions given. For this, it suffices to show that the conditions 
of Exercise 5.27 hold for Ζ,, X,, and This is tedious but straight-
forward to show, and the details are left to the reader. Care must be 
taken to treat ωη as a random variable, as the definition of ωα implies. 
For example, the elements of ΖΏ~χε/4η = Z'e/fn have the form 
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As before, the choice Ζ = C„Z is not critical for constructing βη, but 
only for constructing β*. 

This result is similar to a result for nonlinear models with a finite 
number of different error variances given by White [ 1980]. Although 
the present result applies only to linear rather than nonlinear models, 
it applies to systems of simultaneous equations and panels rather than 
only single reduced form equations and allows dependent observa-
tions (e.g., lagged dependent variables) instead of only independent 
observations. 

VII.4 Case 3: Serial Correlation 

In this section we consider finding the efficient estimator when the 
error covariance matrix has the structure which arises when the non-
spherical error term is generated by a finite order vector autoregressive 
model of the form 

€, = R^,-, + R 2€,_ 2 + · · • + R m€ ,_ m + I fc , 

w h e r e R T , T = l , . . . , m are ρ Χ ρ matrices of unknown coefficients 
and η, is a ρ X 1 disturbance vector with Efa) = 0, Ε(ηΜ) = Σ, and 
other properties to be precisely specified below. The number of lags m 
is assumed to be known. 

The covariance matrix Ω„ which arises in this case has an extremely 
complicated and rather uninsightful form, so we omit writing it 
down. Although it is in principle possible to obtain a consistent 
estimator for Ω„ and proceed by analogy to the cases just given, such 
an approach is extremely tedious. 

Instead, we consider finding an estimator for ßQ using the "pseudo-
differenced" version of the original model 

= %ßQ ~ R Ä - i / ? o ~ · ' · - R A - m A 
+ £ , - Rii,-! - . . . - R me ,_ m , / = m -h 1, . . . , n 

or 
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y< - Riy / - i - · · · - R m y , - m 

= ( X / ~ R 1 X / _ 1 — · · · — RmXt_m)ßQ 

+ ηί91 = m + 1, . . . , ΑΙ. 

If R,, . . . , R m were known, the results of Section 2 would apply 
immediately, provided that the explanatory variables, errors, and 
instrumental variables satisfy the appropriate conditions. 

Because R,, . . . , R m are unknown, they must be estimated, so we 
take the lagged y's to the right-hand side of the equation and consider 
estimating the parameters of the equation 

This model resembles models previously considered, but differs in 
form, because the parameters R,, . . . , R m appear as premultiplying 
the explanatory variables rather than postmultiplying them. 

This difference is purely formal, however, because we can algebrai-
cally manipulate this equation into an equivalent version in the 
familiar form by using the vec operator. If A is an η X k matrix with 
columns A l 5 A 2 , . . . , A*., then vec A is the nk X 1 column vector 
such that 

lAJ 
It is straightforward to show that for conformable matrices A, Β and C, 

vec(ABC) = ( C <8> A) vec B. 

Now consider 

y, = R,y,_, + · · · + R my,_ m 

+ X ,Ä , -R 1 X,_ ,Ä ) R, m 
+ η,, t = m + 1, . . . ,n. 

A, 
A 2 

vec A = 

m 
Riy,-i + · · • + Rmy, t-m = vec 2 y't-τΚ = vec y,R', 

where y, = (y^, , . . . , y't-m) is a 1 X pm vector and R is the ρ X pm 
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matrix defined as 

R = [ R l 5 R 2 , . . . , R w ] . 

Hence 

R , ^ - ! + · · · + R m y , _ m = vec y ,R' = vec y , R ' I , = ( I , ® y,)vec R ' . 

Letting Y t = ( I p <8> yt), a ρ Χ ρ2m matrix, and/?0 = vec R ' , a p2m X 1 
vector, we have 

Riy t-i + · · · + R w y , _ „ , = Y,A,. 

Next, consider rewritingR,X,_i/?0 4- · · · RmXt_mß0. Denoting 
the /th column of Χ ,_ τ by Χ ,_ τ /· , / = 1, . . . , / c , then the z'th column 
o f R 1 X / . 1 + · · · + R m X , _ m is given by 

RiXf-iz + · · · + RmXt-mi = vec \tiR\ 

where xti = (X't-U9 · · · > Xi-m/)> a 1 X /wi vector, so that we have 

vec x„R ' = ( I , <g> x„)vec R' = Xtip09 

where Xti = ( I ® x„), a ρ X /?2m matrix. Hence 

R1X/-1 + R2X/-2 + · • · + R w X , _ m = [Xnp0, ΧαΡοι. · · · » X/IKPOL 

where X, is the /? X p2mk matrix. 

Χ / = [ Χ / ΐ > Χ / 2 ί · · · * X/*]· 

This allows us to write 

*X-lßo + · ' ' +VLm*i-mßo = *i(lk®Po)ßo, 

so that our model now becomes 

y, = Ϋ/Α, + %ßo + xty0 + fit> t = m+i, . . . , Λ, 

where y0 = - ( I k ® / > 0 ) Â > -
This model is in precisely the form considered in Section 2, except 

that nonlinear constraints are imposed on the parameters by the 
relationship γ0 = — ( I k <8> ρ0)β0· In Chapter IV, we saw that the 
efficient estimator that imposes these constraints can be determined by 
obtaining the efficient unconstrained estimator and then subtracting a 
correction factor that imposes the constraints. To obtain the efficient 
unconstrained estimator, we use the results of Theorem 7.3 for the 
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three-stage least squares estimator with optimal instrumental vari-
ables. 

One detail remains to be taken care of before we can proceed. This 
arises from the fact that if X, contains any lagged values of either 
dependent or explanatory variables, then Ϋ, or X, may contain these 
variables also, leading to redundancies in the explanatory variables of 
the model 

yt = Ytp0 + %ß0 + Xty0 + nt. 

For example, suppose the original model is 

y, = y,_,a 0 + W,^Q + €„ 

so that X, = (y,_!, W,), ß'Q = (a0, ψ0) and et is a scalar such that 

€, = €,_!#, + >;,. 

The pseudo differenced model is 

y, = y,_,/>0 + yt^a0 + W,^ 0 - yt-2p0a0 

In this example, Y, = y,_ l 5 X, = (^_2, W,^) and γ0 = (~α0ρ0, 
~ ΨοΡο)· Note, however, that both Y, and X, contain y,_!, which 
is a redundancy. The obvious solution is to collect terms, so that 
the model is written without redundancies as 

y, = + p0) + W,^ 0 - yt-2p0<*o 

Now observe that the constraints among the parameters of this model 
are no longer given by γ0 = -ρ0β0. If we write the model as 

y, = y,_,a + W,b + y,_ 2c + W,_ td + v„ 

we can find aQ and pQ as the solutions to the equations a = aQ + p0, 
c = —p0a0, which implies in particular that p0 is the solution to the 
quadratic equation pi — apQ — c = 0. Denote the appropriate 
solution as />0(a, c). Then the constraints can be expressed as 

d=/> 0(a, c)b. 

In general, whenever redundancies arise in the model 

y, = Y,/>0 + Xj? 0 + X,y0 + //,, 
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we can eliminate them by collecting terms. Once this has been done, 
we can write the model compactly as 

yt = XtS0 + n, 

where X, contains the nonredundant columns of Ϋ,, X,, and X,, and δ0 

is a parameter vector that satisfies restrictions s(SQ) = 0. For example, 
when X, contains no lagged variables, we have X, = (Ϋ,, Χ,, Χ,), δ'0 = 
(PO,ß'o, Vol and s((J0) = Yo + {lk®pQ)ß0 = 0. 

The estimation problem now amounts to efficiently estimating the 
parameters of a linear model with contemporaneous covariance in r\t 

and nonlinear constraints on the parameters. This can be accom-
plished by the following three-step procedure. 

First obtain consistent estimates of <J0, for example, by 2SLS using 
appropriate instrumental variables Z,. Letting X be the matrix with 
tth block X, and letting Ζ be the matrix with tth block Z,, the 2SLS 
estimator is 

Next, obtain a consistent estimator of Σ as 

where rjt = y t — X,£„, and form the 3SLS estimator 

where Ω„ = <8> Σ„. 
Finally, obtain the efficient estimator as 

where s(S0) = 0 expresses the parameter constraints. As mentioned 
in Chapter IV, Jurtherkerations of the equation above can be under-
taken (replace Sn with δ*, etc.), although no further gain in asymptotic 
efficiency is achieved. 

Also note that the validity of the constraints (hence the validity of 
the autoregressive model for €,) can be tested using the Wald test of 
Exercise 4.42. If the hypothesis that the restrictions are true is re-
jected, one may want to consider reformulating the model before 
proceeding. 
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Applying Theorems 7.3, 4.60 and 4.61, we obtain the following 
result. 

THEOREM 7.6: Suppose 

(i) y, = X,& + €, and € f = R 1 € / _ 1 + · · · + R m € , _ m + ifc, t = 
1, . . . , n, so that y, = X,<J0 + //, as above, where 
s(£ 0)

 = 0, t = m + 1, . . . , «, and that r\t = cet for some fi-
nite nonsingular nonstochastic ρ Χ ρ matrix such that 
ce' = X. Suppose there exists a unique σ-field generated by 
row vectors {W,} such that 

E(et\Wt) = 0 and 

E(€t\8t) Φ0 for all £ ,Da(W,) , t=l, 

£(€,€,'|W,) = U = 1 , 

£(€,€;|W,,WT) = 0 , f * T = l , 

and define instrumental variables Ζ satisfying 

£(X,|W,) = Z , n o , i = l , 

where X, = c - 1X , and Π 0 is an / X k matrix of full column 
rank containing no zero rows. Let Zt = cZ,. 

In addition, suppose that 

(ii) {(Ζ,, X,, i/f)} is a mixing sequence with either φ{πί) of size 
r/(2r — 1), r > 1 or a(m) of size r/(r — 1), r > 1; 

(iii) (a) ^(Z^j /Jg , . ! ) = 0 for all t, where {g,} is adapted to 
{Z^?/,A}, Λ = 1, . . . , ρ, i = 1, . . . , /; 

(b) E\Ztgflth\
2^<A<™ and Ε\ηίη\

2^ < Δ < oo for 
some δ > 0 and all ί; 

(c) V„ = var(rt" 1 / 2Z'c) is uniformly positive definite; 
(iv) (a) E\Zthi\

2^ < Δ < oo and E\Xthj\
2^ < Δ < oo for some 

0 < δ < r, & Λ = 1, . . . , /?, / = 1, . . . , /, j = 
1, . . . , k, and all i; 

(b) Qn = E(Z'X/n) and Qn = E{Z'X/n) have uniformly 
full column rank; 

(c) L„ = E(Z'Z/n) is uniformly positive definite. 

Define 
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where 

Let 

and 

δη = ( X ' Ô - ' Z C Z ' Ô - ' Z ) - ' ^ ^ 

and define 

xtvsAxx ' ^^cz 'Ü^^r^^-^ r^s^ j isA) . 
Then Ό~ι/2η~ι/2(δ* - δ0) ~ N(0,1), where 

D„ = avar δη - avar <5„Vs(<$0)'[Vs(<$0) avar SnVs(S0)']-lVs(S0) avar <!„, 

avar Sn = (Q;V^QJ" 1 , and D„ - D„ - 0, where 

D„ - avâr <5„ - avâr 8nVs(Sn)'[Vs(SH) 

X avâr 4 vsA) /]"" 1Vs(J n) avâr δη 

and 
avâr <5„ ^ (Χ'Λ-^ίΖ'Λ-^Γ^'Λ" 1 */ / ! ) - 1 . 

Further, the conclusion of Theorem 4.61 holds for δ* with respect to 
any constrained estimator based on any estimator allowed by the 
conditions of Theorem 4.57. 

Proof: The properties of Sn follow from Theorem 7.3 and the prop-
erties of <J* follow from the proof of Theorem 4.60. The final result 
holds because the hypotheses of Theorem 4.61 are satisfied. The 
consistency of D„ follows from Proposition 2.30. 

Although this result establishes the asymptotic efficiency of 8* with 
respect to any constrained (or unconstrained) consistent asymptoti-
cally normal estimator making use of instrumental variables formed as 
measurable functions of the elements of W,, the finite sample proper-
ties of this estimator are not necessarily optimal. In particular, ne-
glecting the first m observations in constructing the pseudo-differ-
enced model may lead to nonnegligible efficiency losses in finite 
samples. (See Harvey [1981, Section 6.1].) 
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Also of importance is the fact that the present estimator is the 
efficient estimator for the parameters of the pseudo-differenced 
model. If X, does not contain lagged values of y,, then it can be shown 
that Sn contains the efficient estimator for the original model. Other-
wise, it turns out that δn is not as efficient as it would be if it were not 
necessary to estimate the element^ of R. This is because when X, 
contains lagged values of y, and et exhibits serial correlation then 
condition (i) of Theorem 7.1 is not satisfied. 

Finally, we note that the moment restrictions imposed in (iii) and 
(iv) will imply restrictions on the admissible values for the elements of 
R t , R 2 , . . . , R m . This is because y, can be made to "explode" for 
certain values of these parameters. As a simple example, consider the 
model 

If \Po\ - 1 » assumption (iv.a) will be violated. Because the elements of 
R t , . . . , R m are unknown, it is convenient that the conditions we 
give do not require checking these parameters directly. Instead, it 
suffices to specify that the moment conditions of (iii) and (iv) are 
satisfied. 
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C H A P T E R VIII 

Directions For Further Study 

In this chapter we briefly discuss topics not covered in previous 
chapters and how techniques introduced in this book relate to these 
topics. 

VIII. 1 Extensions of the Linear Model 

Although the results of the previous chapters cover a broad range of the 
possibilities of interest to economists, there is one situation that is not 
treated by any of our results. Specifically, the moment conditions 
imposed on the instrumental and explanatory variables rule out the 
use of time trends or other time series that grow without bound. 
Although there is some question as to whether models that make use of 
such variables are appropriate in economics (e.g., see Nelson and 
Plosser [ 1982]), it is certainly possible to develop a theory which covers 
many of these cases. In particular, the Markov law of large numbers 
(Theorem 3.7) or the McLeish law of large numbers (Theorem 3.47) 
can be useful in establishing consistency in models with trending 
explanatory or instrumental variables. In fact, consistency may hap-
pen "faster" in models with these variables because the error variance 
may become quite negligible in comparison to the magnitude of the 
regression function XtßQ. Asymptotic normality can be established 
with the help of the Lindeberg or Martingale-Lindeberg central limit 
theorems (Theorem 5.6 or 5.24). In fact, conditions ensuring asymp-

186 
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totic normality in models with nonstochastic and possibly trending 
variables were the subject of careful attention very early on (Gren-
ander [1954]) and there is a well-developed general theory now avail-
able (e.g., Crowder [1980]). 

Another case not covered was generalized instrumental variables 
estimation of a linear model when the elements of Ω„ are known 
functions of {W,} and a finite number of unknown parameters. This 
situation is most easily treated in the framework of maximum likeli-
hood estimation, which we discuss below. 

VIII.2 Nonlinear Models 

Throughout, we have restricted attention to models linear in the 
parameters, although we have allowed nonlinear restrictions among 
the parameters to hold. A more general model that contains many 
situations of interest to economists can be written as 

q,(y„X„ &) = €,. 

In the particular case we studied, 

q,(y,,x,,A>) = y ,-x,Â). 
There are a variety of ways to obtain consistent and asymptotically 
normal estimators for ßQ. One way is analogous to the approach 
considered here. Suppose we have available instrumental variables Z, 
such that E(Z[et) = 0. Then we can attempt to estimate ßQ by solving 
the problem 

min q(/?)'ZP„Z'q(A 
ρ 

where q(ß) is the np X 1 vector with tth block q,(y/5 X,, /?), so 

Z'qOS)=£Z;q,(y,,X,,A 

The solution to this problem is called the generalized method of 
moments estimator. Its properties have been studied by Amemiya 
[1977], Burguete, Gallant and Souza [1982], and Hansen [1982], 
among others. 

To establish properties analogous to those obtained here, we need 
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somewhat more powerful tools than those given. In particular, re-
peated use is made of uniform laws of large numbers and the mean 
value theorem for random functions (e.g., see Jennrich [1969]). 

VIII.3 Other Estimation Techniques 

Whereas the method of instumental variables studied here is useful 
and computationally convenient, there are many other ways of con-
structing useful estimators. Primary among these is the method of 
maximum likelihood. In fact, if one assumes that the disturbances et 

are independent and identically distributed as multivariate normal 
with unknown covariance matrix, then the IV estimators of Section 2, 
Chapter VII (hence Section 4, Chapter VII) can be shown to be 
asymptoticaly equivalent to the maximum likelihood estimator under 
general conditions. There is a broad range of situations where maxi-
mum likelihood and instrumental variables are asymptotically equiva-
lent (see Hausman [1975] and Amemiya [1977]), although this equiv-
alence fails for the general case of nonlinear models previously 
mentioned. In that case, maximum likelihood can be shown to be 
more efficient than instrumental variables (Amemiya [1977]). 

Use of the method of maximum likelihood requires an assumption 
about the distribution of the errors, whereas instrumental variables 
does not. Thus, the method of instrumental variables is available in 
situations where a knowledge of the error distribution is absent or 
suspect. Nevertheless, maximum likelihood estimation can be con-
ducted as if the errors have the assumed distribution, whether this 
assumption is valid or not. This procedure is known as quasi-maxi-
mum likelihood estimation, a member of the class of M-estimators 
(Huber [1967]), which contains a variety of useful and interesting 
estimators. By selecting an M-estimator appropriately, it is possible 
to obtain estimators that are quite robust to failure of distributional 
assumptions or to certain plausible kinds of data errors. 

Again, the study of these estimators requires use of uniform laws of 
large numbers and mean value theorems for random functions. A 
general treatment of these estimators that also highlights the parallels 
with IV estimators has been given by Burguete, Gallant, and Souza 
[1982]. 
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VIII.4 Model Misspecification 

Throughout this book, we have maintained the assumption that the 
model is known to be 

y t = Xtß0 + et. 

It would indeed be fortunate if the relationship between X, and y, were 
ever truly "known." Owing to the complexity of economic phenom-
ena, it is perhaps more realistic to suppose that the relationship 
between X, and y, is unknown. In this case, a linear model such as that 
just given can be viewed as a convenient approximation but not 
necessarily as a definitive description of the relationship between X, 
and y,. It then becomes important to consider questions such as 
"How is this approximation to be interpreted?", "What are the proper-
ties of the parameters of the approximation?", "How can the approxi-
mation be improved?", and "How can we tell if our approximation is 
exact?" 

Recently, these questions have been given quite a bit of attention by 
econometricians. For a discussion that builds on the material in this 
book in a framework encompassing several of the extensions discussed 
in this chapter, the reader is referred to Estimation, Inference, and 
Specification Analysis (White [1984]). 
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EXERCISE 2 .8 

Proof: Let an = Anbn where An = [Anij] and b'n = (bnl, 
bn2, . . . ,bnk). Then α ^ ^ Σ ^ Α ^ . Since{A n i J} is0(1)and{b n j} 
is 0 ( 1 ), {Anijbnj) is 0 ( 1 ) by Proposition 2.7(iii). By Proposition 2.7(ii), 
{ani} is o( 1 ) because it is the sum of k terms, each of which is o( 1 ). It 
follows that {an = Anbn) is o(l). 

EXERCISE 2 . 1 3 

Proof: Since Z' X/n Q and P„ P, it follows from Proposi-
tion 2 . 1 1 that det(X' ZP„Z' X/n2)JLjL- det(Q' PQ). Since Q has full 
column rank and Ρ is nonsingular by (iii), det(Q' PQ) > 0 . It follows 
that det(X'ZP„Z'X/« 2) > 0 almost surely for all η sufficiently large, 
so that (Χ' ZPnZ' X/n2)"1 exists a.s. for all η sufficiently large. Hence 
βΗ = (X'ZpnZ'X/n2)-xX'ZVnZ'y/n2 exists a.s. for all η sufficiently 
large. Given (i), βη = β0 + (X'ZP Ζ'Χ/^Γ'Χ'ΖΡ, ,Ζ'βΜ It 
follows from Proposition 2 . 1 1 that & J L L - ß0 + (Q'PQr'Q'P X 
0 = β0 given (ii) and (iii). 

EXERCISE 2 . 2 0 

Proof: Since {Q„} is O(l) and {P„} is O(l), it follows from Proposi-
tion 2 . 1 6 that d e t ( X ' Z P w Z ' X / H 2 ) - d e t ( Q ; , P w Q J - ^ 0 . Given 
(iii), it follows from Lemma 2 . 1 9 that {Q^P^Q,,} is uniformly positive 
definite, so det(QJ,PwQ„) > δ > 0 for all η sufficiently large. It follows 

191 
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that det(X'ZP„Z'X/« 2) > δ/2 > 0 almost surely for all η sufficiently 
large. Hence ßn = (X'ZPnZ'X/n^X'ZP^Z'y/n2 exists almost 
surely for all η sufficiently large. Given (i), ßn = ß0 + (X'ZpnZ'X/ 
η2)~χΧ'ZY*nZ'elri1. Given (ii) and (iii) it follows from Proposition 
2.16 thatÄ - (ß0 + ( Q X Q J - ' Q X X 0) — 0, that isßn — β > . 

EXERCISE 2.22 

Proof: 

(i) Since {an} is O a s(« A) and {bn} is 0^(ημ) there exist nonsto-
chastic O(l) sequences {cn} and {dn} such that η~λαη — 
cn - S l i-> 0 and η~μοη — dn 0. Given that {dn} are 
0 ( 1 ), cn and dn are contained in a compact set C = [— Δ, Δ] for 
all η sufficiently large. By Proposition 2.16, η~λαηη~μοη — 
cndn = η~(λ+μ)αηοη — cndn 0, and since {cndn} is O(l) by 
Proposition 2.7, {anbn} is O a s( l ) . Next consider {an + bn). 
Since η~δ\η~λαη — cn\ ^ \η~λαη — cn\ it follows that if {an} is 
Oas(n

À) then {an} is 0^(ηλ+δ) for δ > 0. (Note that { A T ^ } 
is O(l).) Hence there exist O(l) sequences {en}, [fn] such 
that n~Kan — en-^-+0 and n^bn—f-^^O. By Propo-
sition 2.16, n~Kan + n~Kbn — (en +f„) = n~K(an + bn) — 
(en +fn) — 0 sso that {a„_+ £„} is O a, X « * ) . 

(ii) Given η λαη 0 and « ^ 0, it follows immediately 
from Proposition 2.16 that n~xann~ßbn = n~a+ß)anbn 0. 
Now η~δ\η~λαη\ ^\η~λαη\for <J > 0 so that {an} is 0 A. S. ( "

A + < J
) if it 

is 0 A. S. («
A
) . Hence « ~ * < ζ „ 0 and ΑΖ~*£ Λ-^ -^ 0, and by 

Proposition 2.16, n~Kan + n~Kbn = n~K(an + bn) 0. 
(iii) By definition, n~xan — cn -±±-+ 0 and τΓμ\)η -L±^ 0, where {cn} 

is 0 ( 1 ), and hence, interior to a compact set C = [— Δ, Δ] for 
all η sufficiently large. Since {dn = 0} is also O(l), 
n~kann^bn — cn X 0 = n~a+fi)anbn 0 by Proposition 
2.16. Consider {an + bn). Clearly, if{bn) is 0a.s.(«O, then 
is 0&&(η

μ). It follows from (i) that {an + bn) is Oas(n
K). 

EXERCISE 2.29 

Proof: The proof is identical to that of Exercise 2.13 except that 
Proposition 2.27 is used instead of Proposition 2.11 and convergence 
in probability replaces convergence almost surely. 
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EXERCISE 2 . 3 2 

Proof: The proof is identical to that of Exercise 2 . 2 0 except that 
Proposition 2 . 3 0 is used in place of Proposition 2 . 1 6 and convergence 
in probability replaces convergence almost surely. 

EXERCISE 2 . 3 5 

Proof: 

(i) Let {cn}, { ^ b e 0 ( 1 ) sequences such that η~λαη — cn 0 and 
n~Mbn — dn-+0. Since cn, dn are interior to the compact 
set C = [—Δ, Δ] for all η sufficiently large it follows from 
Proposition 2 . 3 0 that η~λαηη~μοη — cndn = n~a+fi)anbn — 
cndn 0 so that {anbn} is Ορ(η

λ+μ). Next consider {an + bn). 
Since η~δ\η~λαη — cn\ ^\n~kan — cn\ for 5 > 0 , it follows that if 
{an} is Ορ(η

λ) then {an} is Ορ(η
λ+δ). Hence, there are O(l) 

sequences {en}, {fn} such that n~Kan — en — 0 and n~Kbn — 
fn̂ 0. By proposition 2 . 3 0 , n~Kan + n~Kbn — (en +fn) = 
n-K(an + bn)-(en̂ fn)^0, so that {an + bn) is Op(n

K). 
(Recall that {en + f„) is O(l) by Proposition 2 .7 . ) 

(ii) We have η~λαη 0 , n~Mbn 0 . It follows from Proposition 
2 . 3 0 that η~λαηη-^η = n~{X+/i)anbn 0 so that {ajbn} is 
0^(1) . Consider {an + bn}. Since [an), {bn} are 0p(n

K), we 
again apply Proposition 2 . 3 0 and n~Kan + n~Kbn = 
rr«(an + bn)±0. _ 

(iii) By definition, η λαη — cn —• 0 and « **ôn —> 0 , where is 
O(l). Also {dn = 0} is O(l), so that Proposition 2 . 3 0 ap-
plies and n~Àann~Mbn — cn X 0 = n~(À+M)anbn —> 0 . Consider 

+ Since {bn} is also Ο ρ ( « Ό , it follows from (i) that 
{an + bn) isOp(n

K). 

EXERCISE 3.6 

Proof: We verify the conditions of Exercise 2 . 1 3 . Given (ii), the 
elements of {Z'tet} and {Ζ,'Χ,} are i.i.d. sequences by Proposition 3 . 3 . 
The elements of {Z'tet} and {Z't X,} have finite expected absolute value 
given (iii.b) and (iv.a). By Theorem 3 . 1 , 

Ζ'€/η = η~ι J) Ζ , ' € , - ^ 0 
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and 

Ζ ' Χ / Λ - Λ - · £ z;x»- Q, 

finite with full column rank. Since (iv.c) is also given, the conditions 
of Exercise 2.13 are satisfied and the result follows. 

EXERCISE 3.13 

Proof: By Minkowski's inequality, 

A=l 

Ι+δ 

[ Ρ ~\\+δ 

< 

= Δ ' . 

EXERCISE 3.14 

Proof: We verify the conditions of Theorem 2.18. By Proposition 
3.10, {X,'e,} and {Χ,'Χ,} are independent sequences with elements 
satisfying the moment condition of Corollary 3.9 given (iii.b), (iv.a), 
and using the results of Corollary 3.12 and Exercise 3.13. It follows 
from Corollary 3.9 that 

and 

Χ'Χ/,ι - Mn = n~x 2 X;X, - M„ • 

M„ is 0 ( 1 ) given (iv.a) as a consequence of Jensen's inequality and the 
Cauchy-Schwartz inequality. To show this, consider the /, 7th ele-
ment of Mn, 
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«- £ Σ E(XlhiXlhj). 
/ = 1 Λ = 1 

Now 

; « - 2 Σ \E(XMxthj)\ 

< «-« £ i £ ix a i 

< «-· 2 i (£|χ<Α,ι
2) ,/2(^ιχ(Λ/)

1/2 

/ = 1 A«=l 

= /?Δ' < oo 

given (iv.a). Hence, the conditions of Theorem 2.18 are satisfied and 
the result follows. 

EXERCISE 3.38 

Proof: We verify the conditions of Exercise 2.13. Given (ii), {Z[et} 
and {ZT'X,} are stationary ergodic sequences by Proposition 3.36, with 
elements having finite expected absolute values given (iii.b) and 
(iv.a). By the ergodic Theorem 3.34, 

Z'e/n = rrl £ Z,'€, J L L - 0 
/= ι 

and 

Z'X/H = n~x J) z ; x , Q , 

finite with full column rank. Since (iv.c) is also given, the conditions 
of Exercise 2.13 are satisfied and the result follows. 

EXERCISE 3.51 

Proof: We verify the conditions of Theorem 2.18. Given (ii), 
{X,'€,} and {Χ,'Χ,} are mixing sequences with φ{ιη) of size r/(2r — 1), 
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r > 1, or a(m) of size r/(r— 1), r> 1, by Proposition 3.50. Given 
(iii.b) and (iv.a) the elements of {X,'€,} and {Χ,' X,} satisfy the moment 
condition of Corollary 3.48 by Minkowski's inequality and the 
Cauchy - Schwartz inequality. It follows that X'e/n 0 and Χ' X/ 
η — Mn 0. M„ is O(l) by Jensen's inequality given (iv.a). 
Hence the conditions of Theorem 2.18 are satisfied and the result 
follows. 

EXERCISE 3.53 

(i) The following conditions are sufficient: 

(a) y = a y _ 1 + ) ? x + € , | a | < l , | j 8 | < o o ; 
(b) {(y,, x,)'} is a mixing sequence with φ(τή) of size r/(2r — 

1), r > 1, or a(m) of size r/(r— 1), r > 1; 
(c) ( 1 ) E(xMet) = 0, j = 0, 1, 2, . . . and all 

(2) £(€,€,_,) = 0,7 = 1, 2, 3, . . . and all t; 
(d) (1) £ | χ 2 | Γ + * < Δ < ο ο and E\e2\r+S< Δ < <» for some 

0 < J < r a n d alii; 
(2) M„ = E(X'X/n) has det M„ > γ > 0 for all η suffi-

ciently large, where Χ Ξ (y_j, x). 

First, we verify the hint (see Laha and Rohatgi [ 1979, p. 53]). We are 
given that 

t - i 

By Minkowski's inequality for finite sums, 

^(ij(^iw / p ) p 

for all η > 1. Hence 

lim Ε 
η—»oo 

2 | Ζ ^ | ' Α ΐ ί ι η ( ^ ( £ | Ζ , η 1 / ' ) , ' 

=(i (E\z,w>y 

by continuity of the function g(x) = x p. Applying Fatou's Lemma 
(Laha and Rohatgi [1979, p. 49]), 
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Σ 2, 
ί - 1 

= Ε Jissi Σ Η 

Ü S 1 Σ 

s ü m ^ l x i z j 

^ (Ii (E\z,w*y, 

which is the desired result. 
Next, we verify the conditions of Exercise 3.51. First {(y,, x,)'} 

mixing implies {(Xt9 €,)'} = {(yt-\, x„ €t)'} is mixing and of the same 
sizes given (a) and (b) by Theorem 3.49. 

Next, by repeated substitution we can write y, as 

7 - 0 j-o 

so that 

y * - A = Α Σ aJx
<-j-i*<+ Σ a V i 6 / -

j-o ; - o 

Given (c), we can interchange the summation and expectation opera-
tors by Proposition 3.52. Hence 

00 
E(yt_lel) = ß2<*

J
E(xl-j-i€t) 

j-o 

+ 2 > ^ ( € , - , - , € , ) = 0 
j-o 

given (c). Therefore 

E(X',et) - (E(y,_ i e, ) , 

E(x,e,))' = 0 
so that condition (iii.a) of Exercise 3.51 is satisfied. 

Now consider condition (iii.b). By the Cauchy- Schwartz inequal-
ity, 

E\\,e,\
r+S
 < (E\xj\

r+i
E\ej\

r+£
)

1
'

2 

< Δ < ° ° 
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given (d. 1 ). Further, 

< (Δ'Δ) 1 /2 < oo 

provided E\y
2
_{\

r+0 < Δ' < oo for some Δ'. To show this, we write y , 

as above and apply Minkowski's inequality: 

E\yj\'+* = E 
y-o 7«o 

2(r+â) 

+ (E\et-j\
2ir+â)

y
/2{r+â)

]
2ir+0) 

[ ~\2(r+ô) 
2\β\Αι**'+*> J^\a\J^ 

= [2\ß\Al^r+0W - |a|)] 2 ( r + J ) < 0 0 

if and only if |a| < 1 where we have again used Proposition 3.52 to pass 
the expectation operator through the summation operator. Therefore 
(a), (d. 1 ) ensure that (c.2) is satisfied. We have also shown that (d. 1 ) is 
satisfied, and since (d.2) is assumed, the conditions of Exercise 3.51 
hold and the OLS estimate of (α, ß) will be consistent, 

(ii) Consider the following model: 

y , = a 0y , - i + et 

€, = />(,€,_!+ v„ 

where we assume 

E(yt_{vt) = 0, £ ( y , _ A-!) = E(ytet), 

and 

E(e
2
) = var(6,) = * § . 

Then X, = y t _ x , β 0 = a0, and from chapter I we know that 

E{\[et) = £ ( y , _ , € , ) = σ
2

0ρ0/(\ - p0a0). 

Therefore, if σ\ Φ 0 and p 0 Φ 0, condition (iii.a) of Exercise 3.51 is 
violated. 
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EXERCISE 3 . 7 8 

Proof: We verify the moment condition of Theorem 3 . 7 7 . Since 
E\Z,\2r < Δ < oo for all /, it follows that 

Σ £ | Ζ , |
2

7 /
, +

' < Σ Δ / / >
+

' 

/ = 1 t=\ 
oo 

= Δ 2 l / / ' + r < ° ° 
t= 1 

since Σ"=1 1/ϊ 1 +Γ < °° for any r > 0. The result follows from Theorem 
3.77. 

EXERCISE 3.80 

Proof: We verify the conditions of Exercise 2.20. First, note that 
Z'e/n = n~1 Σ£= ,Ζ^/ , , where Zh is the « X / matrix with rows Zth and 
€Ä is the η X 1 error vector with elements eth. By assumption (iii.a), 
{Zlhielh9 g , } is a martingale difference sequence. Given (iii.b), the 
moment conditions of Exercise 3.78 are satisfied so that n~l Σ^=1 

Z l A i € f A "
Î J

^ 0 > A = 1, . . . , /?, / = 1, . . . , /, and therefore Ζ'β/ 
« q by Proposition 2.11. 

Next, Proposition 3.50 ensures that {Ζ,'Χ,} is a mixing sequence 
given (ii), which satisfies the conditions of Corollary 3.48 given (iv.a). 
It follows from Corollary 3.48 that Z' X/n - Qn 0, and Q„ is 0 ( 1 ) 
given (iv.a) by Jensen's inequality. Hence the conditions of Exercise 
2.20 are satisfied and the result follows. 

EXERCISE 4.18 

Proof: Let V be k X k with eigenvalues λλ, . . . , Xk. Since V is 
real and symmetric it can be diagonalized by 

V= Q'DQ, 

where D = diag(A,, . . . , kk) is the matrix with the eigenvalues of V 
along its diagonal and zeros elsewhere, and Q is an orthogonal matrix 
that has as its rows the standardized eigenvectors of ^corresponding to 
A|, . . . , λ .̂ Furthermore, since V is positive (semi) definite its 
eigenvalues satisfy λχ > (>) 0, / = 1, . . . , k. Hence, defining 

D"2 - diagW 2, . . . , Xy2\ 

we can define the sqaure root of V as 

j/i/2 = Q>DV
2
Q. 
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Then 

(V1*2)'= Q'(Dl/2)'(Q'y 

= Q'Dl/2Q 

= y\a 

so that Vl/2 is symmetric. Also, for any χ Ε ^ , χ ^ Ο , the quadratic 
form 

x'Q'Dl/2Qx = (Qx)'Dx'2(Qx) 

is strictly positive (nonnegative) because A, > (>) 0, / = 1, . . . , k. 
Hence, Vl/2 is positive (semi) definite. Finally, 

T /1 /2J /1 /2 = Q'DV2QQ'Dl/2Q 

= Q'DXI2DXI2Q 

since Q is orthogonal 

= Q'DQ= V. 

EXERCISE 4.19 

Proof: If Ζ ~ N(0, V) it follows from Example 4.12 that 

V-wZ-NiV-^XO, ν-χ'2νν-χ'2\ 

that is 

K - " 2 Z ~ t f ( 0 , 1 ) 

since 

y-\/2yy-\/2 = y-\/2y\/2y\/2y-\/2 = J 

EXERCISE 4.26 

Proof: Since Z'X/n — Q„-^0 where is finite and has full 
column rank for all η sufficiently large and P„ — Ρ Λ 0 where P„ is 
finite and nonsingular for all η sufficiently large, it follows from 
Proposition 2.30 that 

X ' Z Î ^ Z ' X / ^ - Q X Q ^ O . 

Also since Q^P„Q„ is nonsingular for all η sufficiently large by Lemma 
2.19 given (iii), (Χ'ΖΡηΖ'Χ/η2)-χ and βη exist in probability. Given 
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(i) and the existence of ( Χ ' Ζ Ρ , , Ζ ' Χ / Μ 2 ) - 1 , 

Mßn-ßo) = ( X ' Z Î ^ Z ' X / « V ( X ' Z / « ) P n / r ' / 2 Z ' e . 

Hence, given (ii), 

- ßo) - (Q'„PnQ„rlQ'nPnn-l'2Z'€ 

= [ ( X ' Z P „ Z ' X / / i
2
) - ' ( X ' Z / « ) P N 

- (Q;pnQNR'Q;pn]vy2v-'/2«-/2z'€ 
exists in probability for η large enough. Premultiplying by D ~ , / 2 

yields 

Ώ^Μβπ-βο) - D ^ Q ^ Q J - ' Q ^ / T ' ^ Z ' é 

= D ; ' /
2
[ ( X ' Z P N Z ' X / «

2
) - ' ( X ' Z / « ) P N - (QXQJ-'QX] 

• vy2v-1/2«-'/2z'€. 
Now V - , / 2 « - ' / 2 Z ' e ~ N(0,1) given (ii) and 

D -
I
/

2
[ X ' Z P „ Z ' X / «

2
) -

1
( X ' Z / / 2 ) P N 

-(QXQJ-QXM/ 2 

is 0 P(1) since D ~ 1 / 2 and \ l

n

/ 2 are O(l) given (ii) and (iii) and 

( X ' Z P N Z ' X / «
2
) - ' ( X ' Z / « ) P „ - (QXQ^'QX 

is 0P(1) given (iii) by Proposition 2.30. Hence, by Lemma 4.6, 

D-i/2Mßn-ßo) - D ; ' / 2 ( Q ; P M Q N ) - ' Q ; P N W - ' / 2 Z ' € ^ 0. 

By Lemma 4.7, D ~ 1 / 2 Jn(ß„ — ß0) has the same limiting distribution as 
D n

1 / 2
( Q « P n Q N R ' Q n P N "

_ L / 2
Z ' € . We find the asymptotic distribution 

of this random vector by applying Corollary 4.24 with A'„ = 
( Q n P « Q N R ' Q « P N and Γ „ = D „ , which immediately yields 

D -
1 / 2

( Q ; P N Q „ ) - ' Q ; P N « -
| / 2

Z ' € ~ N(0,1). 

Since (ii), (iii) and (iv) hold, D „ — D W 0 as an immediate 
consequence of Proposition 2.30. 

EXERCISE 4.33 

Proof: Given that V„ - V„ 0 and V„ - V„ 0, it follows from 
Proposition 2.30 that (V„ - V„) - (V„ - V„) = V„ - V„ 0. It 
immediately follows from Proposition 2.30 that Wn — £Mn 0. 
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EXERCISE 4.34 

Proof: From the solution to the constrained minimization problem 
we know that 

and applying the hint, 

Κ = 2(R(X'X/n)-*RrlK(X'X/n)->X'(y - Χβη)/η. 

Now y-Xßn = y - Xxßln - X2ß2n = y - Xx'ßXn = e so that 

λ η = 2(R(X /X)" 1R /)~ 1R(X /X)" 1X /€/«. 

Partitioning R as [0:1J and Χ' X as 

χ / χ = XJXi Xi X 2 
L X 2 X 1 X 2 X 2 J 

and applying the formula for a partitioned inverse gives 

RiX'Xr'R' = (X 2(I - x1(x;xI)-
,x,)x2)"

1 

and 

RiX'xr'x' = (x2(i - x1(x;x1r
1x;)x2)-1x2(i - χ ^ χ ί χ , Γ ' Χ ΐ ) . 

Hence by substitution 

în = 2X2(l-Xl(X\Xl)-*X'i)è/n 

= 2X^€/« 

since € = (I - Χ,(Χί Χ ,Γ 'ΧΟγ and I - Χ,(Χί Χ ,Γ 'Χί is idempotent. 

EXERCISE 4.35 

Proof: Substituting V„ = an{X'X/ri) into the Lagrange multiplier 
statistic of Theorem 4.32 yields 

£Mn = nVM^IniX'X/^Y'WljA. 

From Exercise 4.34, λη = 2X'2'e/n under Η0:β2 = 0. Substituting this 
into the above expression and rearranging gives 

£Mn = ne'X2R{X'XTxR'X'2Wè'e. 

Recalling that X 2R = (0 : X 2) and e'Xx = 0 we can write 

€'X 2R = e'(0:X 2) = €'(X, :X 2) = à'X, 

which upon substitution immediately yields the result. 
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where 

EXERCISE 4.40 

Proof: We are given that s(ß) = ß3 -ßxfk · Hence Vs(ß) = (-ß2, 

- ß u 1). Substituting s(ßn) and Vs(ßn) into the Wald statistic of 
Theorem 4.39 yields 

where 

Note that Wn ~ χ \ in this case. 

EXERCISE 4.41 

Proof: The Lagrange multiplier statistic is motivated by the con-
strained minimization problem 

The Lagrangian for the problem is 

and the first order conditions are 

Setting βη = (X'X/n)
 l

X'y/n and taking a mean value expansion of 
s(ß) around ß n gives 

where V£ is the q X k Jacobian of s with zth row evaluated at a mean 
value ßp. Premultiplying the first equation by Vs(X'X/n)~

l and 
substituting —s(ßn) = Vs(ß — ß n ) gives 

Thus, following the procedures of Theorems 4.32 and 4.39 we might 
propose the statistic 
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Λ„ - 4(V5(x'x/«r 'vj(A)r fvj(A)(x'x/ nr'Vn 
X i X ' X / n r ' V ^ T O X ' X / y i r^ iA ) ' ) - 1 -

The statistic above, however, is not very useful because it depends on 
generally junknown mean values and also on the unconstrained 
estimate ß n . An asymptotically equivalent statistic replaces Vs by 
Vs(ßn) and β, by 

£Mn = ηλ'ηΑ-ιλη, 

where 

Κ = 2[Vs(ßn)(X'X/n)-lVs(ßJ]-ls(ßn) 

and 

A n = 4 (V^(^)(X'X/«)- 1V5(Ä W)0 - 1V^(Ä) 

To show that £Mn ~ χ\ under H0 we note that XMn differs from W„ 
only in that V„ is usedjn place of \ n and βη replaces βη. Since 
ß n ~ Â 0 and V„ — V„ 0 under H0 given the conditions of 
Theorem 4 . 2 5 it follows from Proposition 2 . 3 0 that 

£Mn -Wn^0 

given that Vs(ß) is continuous. Hence £Mn ~ χ\ by Lemma 4 . 7 . 

EXERCISE 4 . 4 2 

Proof: First consider testing the hypothesis Rß0 = r. Analogous to 
Theorem 4 . 3 1 the Wald statistic is 

Wn - n(Rßn - r)t-\Rßn -r)~X\ 

under H0, where 

f„ = RD„R' 

= R(X'ZP„Z'X/« 2r'(X'Z/«)P nV„P n(Z'X/«) 

X(X'ZP„Z'X/n 2)-'R'. 

To prove W„ has an asymptotic χ\ distribution under H0, we note that 

R Ä , - r = R ( Ä - Ä ) 

so 
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where 

τ-^Μ*$η - r) = r-i/2RMßn - A ) , 

where 

It follows from Corollary 4.24 that Γ~ι/2κΜβη ~ ßo) ~ ^(0, I) so 
that Γ~ι/2Μκβη ~ r) ~ N(0, I). Since D„ - D„ 0 from Exercise 
4.26 it follows that f „ - Γη 0 by Proposition 2.30. Hence Wn - χ\ 
by Theorem 4.30. 

We can derive the Lagrange multiplier statistic using a constrained 
minimization approach: 

The first-order conditions are 

where λ is the vector of Lagrange multipliers. It follows that 

Hence, analogous to Theorem 4.32, £Mn = ηλ'ηΚ~Χλη ~ x2

q under H0, 
where 

and V„ is computed under the constrained regression such that \ n — 
\ n 0 under H0. If we can show that £Mn — Wn 0, then we can 
apply Lemma 4.7 to conclude £Mn~x2

q. Note \hai^£Mn differs 
from Wn in that V„ is used in place of V„. Since V„ — V„ 0 under 
/ / 0 , it follows from Proposition 2.30 that £Mn — Wn 0. 

Next, consider the nonlinear hypothesis s(ß0) = 0. The Wald sta-
tistic is easily seen to be 
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and D„ is given in Exercise 4.26. The proof that Wn ~ x2

q under H0 is 
identical to that of Theorem 4.39 except that βη replaces βη9 D„ is 
appropriately defined, and the results of Exercise 4.26 are used in place 
of those of Theorem 4.25. 

The Lagrange Multiplier statistic can be derived in a manner analo-
gous to Exercise 4.41, and the result is that the Lagrange multiplier 
statistic has the form of the Wald^statistic with the constrained esti-
mates βη and V„ replacing βη and V„. Thus 

<£JW,N fiÂ,njA.n 

where 

ln = 2[Vs(ßn)(X'ZPnZ>X/n2r >ν5(βη)Τ
 ls(ßn) 

and 

Λ„ = 4 [ V 5 ( ^ ) ( X ' Z P „ Z ' X / « 2 ) - 1 V 5 ( ^ ) ' ] - 1 

XV5(ÄJ(X'ZP„Z'X/« 2 ) -HX , Z/«)P NVA (Z , X / / 2 ) 

Χ (Χ'ΖΡηΖ'Χ/η2)-^3(βηΥ[ν3(βη) 

X(X'ZpnZ'X/n2)-lVs(ßnyV. 

Now V r t - V „ - ^ 0 and ^s(ßn)-Vs(ßn)^0 given Vs(ß) is 
continuous. It follows from Proposition 2.30 that £Mn — Wn 0 
so that £Mn ~ x2

q by Lemma 4.7. 

EXERCISE 4.46 

Proof: We assume the conditions of Theorem 4.25 are satisfied. 
Then Proposition 4.45 tells us that the asymptotically efficient estima-
tor is 

ß* = (X'XV-'X'Xr'X'XV-'X'y 

= ( X ' X r ^ X ' X r ' X ' X V - ' X ' y 

= (X'X)-lX'y 

=L 

EXERCISE 4.47 

Proof: We assume that the conditions of Exercise 4.26 are satisfied. 
In addition, we assume ön(Z'Z/n) — a^L„ 0 so that V„ = σ 2(Ζ'Ζ/ 
η). (This will follow from a law of large numbers.) Then the condi-
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tions of Proposition 4.45 are satisfied and it follows that the asympto-
tically efficient estimator is 

β* = (Χ'Ζί^ίΖ'Ζ/,ιΐΓ'Ζ'ΧΓ'Χ'Ζί^ίΖ'Ζ/,ιΐΓ'Ζ'γ 

= (X'ZiZ'Zr'Z'X^X'ZCZ'Zr'Z'y 

=
 ^2SLS · 

EXERCISE 4.55 

Proof: By definition, 

€
"»

 =
 Σ Σ ^tThgt-Tg-

τ = 1 * = 1 

Hence 

E(€th\\Vth)=^ t £ ( W J W / A ) 
τ = 1 g=l 

= I I CIIA^(€T,IW,,) 
τ = 1 # = 1 

since CITÄ̂  is measurable with respect to σ( W,A). Further, since 

*(W,A) = Λ σ(\νΓΑ) 
(ISTSn, isgsp: c , r t i* 0 ) 

and therefore tf(WRA) C ff(W^), it follows from Proposition 3.63 that 
£(eRS|W,„) = 0 given E(eTg\WTg) = 0. Hence 

£(eLA|W,A) = 0. 

Next, 

£(2Ή'2//ι) = «- '2 Σ t Σ E(l'thlthlÎgzÎg) 
t=\ τ = 1 A = l # = 1 

= " - ' I I I I £[£(Z;A€,AeTI;ZTI|W,A, WTI)] 
/ = 1 τ = 1 A = l £ = 1 

= Σ Σ Σ Σ E[Z'thECet^g\Wlh, WIS)ZT,] 
t=\ τ = 1 A = l £ = 1 

= " _ , Σ Σ Σ Σ £ [ Ζ > „ Α ] 
f - l T - l A - l ί - Ι 

defining ω, τ Λ? = £·(€,Α€̂ |\ν,Λ, WR?). Setting ω,Γ = [œmhg] and Ω„ = 
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[ω,τ] gives 

ΕφΙΙΊΐη) = / Γ » 2 χ Ε{1[ω,Χ) 
t=\ τ = 1 

= Ε(ΖΏηΖΙή). 

The result follows upon showing that Ω„ = C„C„. Consider a typical 
element of Ω„, 

Mnhg = E(etheTg\Wth, WTg) 

η ρ η ρ ^ /s, 
=
 Σ Σ Σ Σ ^ (

C
i ö / i y

C
T ^ A

€
ö y

€
^ | W / A, WT̂ ) 

0 = 1 γ=\ ψ=\ λ=\ 

= Σ Σ Σ Σ v ^ Ä ^ i w , , , , wrg) 
0 = 1 y=l y/=l λ=1 

since c w hy and cTV,AA are each measurable with respect to cr(W/A, WT̂ ). 
We are given that 

Ε(€^ψλ\ , W^) = 1, θ = ψ, y = λ, 

W ^ , W^A) = 0 , 0 # <p, y # A. 

Also, whenever c,ÖAy ^ 0 we have <r(W,A) C a(W ö y); similarly, 
whenever c w gÀ Φ 0 we have a(WT g) C a(W^A). It follows that 
< W „ , W V ) = a(W,A) V <r(W V) C <j(Wöy) V a(W^) = a(W^, W R A ) 
whenever c w hy Φ 0 and cT^A Φ 0 . By Proposition 3 . 6 3 , 

£ ( € ^ | W , A , W ^ ) = 1 , θ = ψ, γ = λ , 

E(€ofrx\\Vth, W V ) = 0 , θ * ν/, γ Φ λ , 

whenever c t e hy Φ 0 and c w gÀ Φ 0 . Hence 
η ρ 

œtThg= Σ Σ Ct0hyCT0gy> 
0 = 1 y=l 

which is the inner product of the (t, h) row of Cn and the (τ, g) column 
of C'n9 that is the typical element of CnC'n. 

EXERCISE 4 . 56 

Proof: From the hint we can express Zfh as 

Z%
=
 Σ Σ

 C
*tghZtg. 

τ-l g=\ 
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We note that cTtghZxg is measurable with respect to σ(\VT g) so that Ζ*h is 
measurable with respect to 

Sth= V <7(W t i). 

Since 

= Α σ(\νψλ) 

it follows that whenever cTtgh Φ 0, a(WTg) C a(W i A). Since Sth is the 
smallest σ-field containing the union of σ-fields each of which is 
contained in a(Wth), it follows that Sth C σ ^ / Α ) , so that Ζ % is 
measurable with respect to σ ^ , Α ) . 

EXERCISE 4.59 

Proof: Observe that 

MßT-ßt) = -(X'ZpnZ'X/n2)-*Vs(ß*ny 

x iv^^ ix ' z^z 'x /« 2 ) - ^^^ : ) ' ] - 1 ^^?) . 
Now, under the conditions of Exercise 4.26, Ζ' X/n, Pn and Vs(/?£) are 
all Op( 1 ) and have full rank for all η sufficiently large. Thus, if we can 
show that fns(ß%) 0, it will follow from Exercise 2.35 and Proposi-
tion 2.30 that Jnifiï* — β*) 0. Consider a mean value expansion 
of s(ß*) about the true parameter value ß0: 

yßs(ß*) = Jns(ßo) + VsMßt - ßo) 

= VS^(ß*-ßo) 

since s(ß0) = 0, where Vs is the Jacobian of s evaluated at mean values 
between β* and β0. This can be rewritten as 

^is(ß*) = VsAMßn-ß0), 

where 

Ä „ = I - ( X ' Z V - ' Z ' X / H
2
) - ' V 5 ( & ) ' 

X[Vs(£j(X'ZV- 'Z 'X /« 2 )- 'Vi(Ä,)r 1 Vs. 

Now fn(ß„ — ß0) is O p( l ) by Lemma 4.5 under the conditions of 
Exercise 4.26. Since Vi Vs(ß0), Vs(/?„) Vs(ß0), Ζ' X/n is Op( 1 ) 
and V„ is Op( 1 ), it follows from Proposition 2.30 that VsÄ„ 0, where 
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we let bn{œ) - (Ζ'Χ/,ι, V„, Vi, Vs(ßn))' and c„ - (Q„, V„, Vs(ß0\ 
Vs(ß0))'. Hence, by Exercise 2.35, 

4Tis{ßt) = VsAMßn - ßo)Λ 0 

and the result follows. 

EXERCISE 5.4 

Proof: We verify the conditions of Exercise 4.26. To apply 
Theorem 5.2, let Zt = A'V~1 / 2Z,'€,, where λ'λ = 1 and consider n~xa 

Σ? =1 X'Y-l/2Z'tet = n~x/2 IJL, Zt. The summands Zt are i.i.d. by 
Proposition 3.2 given (ii) with E{Zt) = 0 given (iii.a) and var(Z,) = 
λ'\-χι2\\-χ/2λ= 1 given (iii.b) and (iii.c). Therefore n~x/2 

Σ? =1 Zt = n~x/2 Σ,"=1 A ' V - ^ Z i é ^ A ' V - ^ / i - ^ Z ' c - Î V i O , 1) by 
Theorem 5.2. It follows from Proposition 5.1 that V~ 1 / 2«~ 1 / 2Z / € ~ 
JV(0,I)sinceif2/ ~ N(0,I)thenA'2/ ~7V(0, 1). V is O(l) given (iii.b) 
and nonsingular given (iii.c). It follows from Theorem 3.1 and 
Theorem 2.24 that Z' X/n — Q —• 0 given (ii), (iv.a), and (iv.b). Since 
the remaining conditions of Exercise 4.26 are satisfied by assumption, 
the result follows. 

EXERCISE 5.5 

Proof: Given the conditions of Exercise 5.4 it follows that 

ν = η-χ 2 £(€2z;z,) = £(€2z;z,). 
t-=\ 

Now 

E(e2Z[Zt) = E{E(e2Z[Zt\Zt)) 

= £(£(€ 2|Z,)Z;Z,) 

= * 2E(Z;Z,) = <7 2L. 
Hence V = a^L. It follows from Exercise 4.47 that the efficient IV 
estimator chooses Ρ = V - 1 to yield the two stage least squares estima-
tor, 

&SLS = (X'ZiZ'ZJ-'Z'XJ-'X'ZiZ'Zr'Z'y. 

The natural estimator for V is V„ = δ2

η(Ζ'Ζ/η\ where ö2

n = (y -
X$2SLs ) ' ( y ~~ X / ? 2 S L s ) /

w
- Jhe conditions of Exercise 5.4 are not quite 

strong enough to ensure V„ is consistent for V. In addition we need 

(i') E\e
2
\ < oc 

(ii') (a) E\Z2\<™ / = ! , . . . , / ; 
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(b) Ε\Χ2\<™ 7 = 1 , . . . , / : ; 
(c) L = Ε(Ζ,'Ζ,) is nonsingular. 

Note that (ii'.a) and (ii'.b) together imply (iv.a) by the Cauchy-
Schwartz inequality. 

We show that Z'Z/n L and a2

n σ§. Consider Z'Z/w = AT 1 

Σ?.ι Ζ,'Ζ,. Since {Z'tZt} is an i.i.d. sequence given (ii), it follows that 
Z'Z/n L by Theorem 3.1 and Theorem 2.24 given (ii'.a). Next 
consider d2

n = n~\e - X(ß2SLS - ß0))'(e - X ( A S L S - ß0)) = e'€/n -
2(&SLS - ßo)'X'c/n + ( A S L S - Α ) ' Χ ' X / « ( ^ 2 S L S " Α ) · Now ß2SLS -
ß0 -^-^ 0. The elements of X'tet have finite expected absolute value 
given (i') and (ii'.b). Hence X'e/n is O a s( 1 ) by Theorem 3.1. Simi-
larly, Χ , ' Χ , has finite expected absolute value given (ii'.b). Since 
{Χ, 'Χ,} is an i.i.d. sequence it follows from Theorem 3.1 that X'X/η is 
O a . ( 1 ). Therefore - 2(ß2SLS - ß0)X'e/n - 0 and ( & S L S - A ) ' X ' X / 
n(p2SLS ~~ A ) 0 by Theorem 2.24 and Proposition 2.30. Finally, 
consider e'e/n = n~l Σ? =1 e

2. Now {e,2} is an i.i.d. sequence given (ii) 
with finite expected absolute value given (i'). It follows from 
Theorem 3.1 that n~l Σ?., e2-E(e2) = n~l Σ?_, € 2 - σ 2

0 - ^ 0 . 
Hence V„ - V = d2

n(Z'Z/n) - a%L 0 by Proposition 2.30. Given 
that σο > 0 and L is nonsingular it follows from Proposition 2.30 that 
P„ - Ρ = V" 1 - V 1 = {σ2

η(Ζ'Ζ/ή)Τχ - (a2

0L)~l 0. This com-
pletes the exercise. 

EXERCISE 5.9 

Proof: For an identically distributed sequence {Z,} with E{Zt) = μ, 
var(Z,) = a2 < <*>, the Lindeberg condition reduces to 

Now 
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where 1[(ζ-̂ 2̂ €„σ2] is the indicator function. If we can show the 
integral converges to a2 the result will follow immediately. Let 
gn(z) = 1 κ ; - ^ ^ ] ( ζ - μ ) 2 . Then {gn(z)} is a nondecreasing 
sequence for any ζ and lim,^«, gn(z) = (ζ — μ)2. Next we apply the 
Monotone Convergence Theorem (see Rao [1973, p. 135]): 

lim Γ gn(z) dF(z) = Γ lim gn(z) dF(z) 

= J (ζ - μ ) 2 </F(z) = σ 2. 

Hence 

lim σ" 2 Ι (ζ - μ)2 dF(z) = σ~2(σ2 - σ2) = 0 

and the result follows. 

EXERCISE 5.12 

Proo/? We verify the conditions of Theorem 4.25. To apply 
Theorem 5.11, let Znt = À'\-x/2X'tet and consider n~x/2 Σ? =1 λ'\~ι/2 

X'tet = n~xl2 Σ,"»! Znt. The summands Znt are independent by 
Proposition 3.2(b) given (ii), with E(Znt) = 0 given (iii.a), and ö2

n = 
var(^Z„) = λ'\~χ'2 νζτ(η-χ/2Χ'έ)\-χ/2λ = λ'\-χί2\η\-

χ'2λ = 1 
given (iii.c). By (iii.b) E\Znt\

2+0 is uniformly bounded (apply Min-
kowski's inequality). Hence, n~x/2 Σ?=ι Znt = rrX12 Σ?_ι A'V" 1 /2 

X'tet = λ'\-χ'2η-χ/2Χ'€~ N(0, 1) and therefore \-χ/2η-χ/2Χ'β ~ 
N(0,1) by Proposition 5.1. 

Assumptions (ii), (iv.a), and (iv.b) ensure that X'X/'n — Mn 0 by 
Corollary 3.9 and Theorem 2.24. Given (iv.a) M„ is O(l) and uni-
formly positive definite given (iv.b). Since (v) also holds, the result 
follows from Theorem 4.25. 

EXERCISE 5.17: The following conditions are sufficient: 

0 0 (a) y = Ä y - i + Ä y - 2 + € ; 
(b) -\<ß2<U 

A+A<i; 
(ii') (a) {€,} is a stationary, ergodic sequence; 

(b) {€,, g , } is a martingale difference sequence, where g , = 
<T(. . . , € , _ , , € , ) ; 
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(iii') (a) E(ej\%t.l) = a2>0. 
(b) £ | € , |

4
< o o . 

We verify the conditions of Theorem 5.16. Given (ii'.a), {(X,, €,)} = 
{(y,_i, y,_ 2, €,)'} is a stationary ergodic sequence by Theorem 3.35, so 
condition (ii) is satisfied. Since y,_,·, j = 1,2, depends only on past et, 
E(yi_jet) = E(E(yt_jet\^t.i)) = E(yt.jE(et\%t.l)) = 0 given (ii'.b) 
by Proposition 3.52. It follows from Proposition 3.63 that 
E{\[€t\^t-m) = 0, m > 1, so that condition (iii.a) is satisfied. The 
model given in (i'.a) is an AR(2) time series model and condition (i'.b) 
is the familiar stationarity condition that the zeros of the polynomial 
1 — βχζ — β2ζ

2 lie outside the unit disk. Given (i'b) we can write y, as 
an infinite moving average, 

where c, = (\ß2\
l/2)ja(j) and |aO')| < Δ < » for all j > 0 (see Dhrymes 

[1980, pp. 394-395].) Since \β2\< 1 it follows that Σ; . 0 | C , | < » . 
Note that E\yt_xet\

2 < (£|y,_ J 4 ) 1 / 2(£ |€ , | 4 ) 1 / 2 by the Cauchy-Schwartz 
inequality. Hence, if we can show E\yt\

4 < », then condition (iii.b) is 
verified. Now by Minkowski's inequality (see Exercise 3.53), 

y, = IE* 

4 

E\y,\4 = E \2,CjC,-j 

Next, 

η 
V„ s var(«-'/2X'€) = Λ " 1 2 £(€ 2X,'X,) 

t-τ χ',-τχ,)ΐ 
τ - 1 ι - τ + 1 

where Χ, = (JV_,, y,_ 2). Now 

£(e,e,_ tX;X,_ r) = Ε^^Χ',Χ,^,^)) 

= £(£(€ I |g ,_ 1)€ (_ TX;X,_ I) = 0 for τ > 0 , 
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given (ii'.b). Also 

£(€2χ;χί) = ^(£(€2χ;χ ίΐδ ί-ι)) 
= ^ ( € 2 | g / _ 1 ) x ; x / ) 
= σ 2Ε(Χ;Χ,) = (τ2Μ 

given (iii'.a). Note we have used the stationarity of {€,}. Therefore 
det \ n > δ > 0 if and only if det M > 0. It can be shown that (see, 
e.g., Granger and Newbold [1977, ch. 1]) 

£(y 2) = *2(i -A)[(i + A)(d -ßif-ß])]'1 

and 

£(y,y,-i) = * 2Mi -ßif-ßDV-

Hence 

M - ο
1 Λ ΐ -Α) A ^ 

d + A ) [ ( i - A ) 2 - ) 8 , ] \ A ( i -AV 
and det Μ Φ 0 if and only if (1 - β 2 ) 2 -β] Φ 0. Thus condition 
(i'.b) ensures the existence and nonsingularity of M so that (iii.c) and 
(iv.b) are satisfied. 

Finally, consider condition (iii.d). Given (ii'.b), Jî0ij = 0 for 
7 > 0 . For 7 = 0, ^o/ / = ^(y-i€olgo) = y-/€ 0, / = 1 , 2. So 
var(r0 / 0) = £ ((y_,€0)

2) * ^ ( y i ^ i W 2 < oo and Σ °1 0 variÄ^)" 2 = 
var (# 0 / 0)

1 /2 < oo. Therefore the conditions of Theorem 5.16 are satis-
fied and the result follows. 

EXERCISE 5.18 

Proof: We verify the conditions of Exercise 4.26. The proof that 
V" 1 / 2«- 1 / 2Z'€ ~ 7V(0, I) is identical to proving that V" 1 / 2>r 1 / 2X'€ ~ 
7V(0,1) in Theorem 5.16 with Ζ replacing X everywhere. 

Next, Z'X/n — Q 0 by Theorem 3.34 given (ii), (iv.a), and (iv.b), 
where Q is finite with full column rank. Since the conditions of 
Exercise 4.26 are satisfied, it follows that 

D- !*VÄ(Ä-A)~m I), 
where 

D„ - ( Q P Q r ^ P V ^ P Q i Q T Q ) -



Solution Set 215 

Since D„ - D —> 0 it follows that 

O~l/2Mßn - ßo) - l>-n

l/2Mßn - ßo) 

= ( D ~ 1 / 2D ~ 1 / 2 - l)O-^Mßn ~ßo)-0 

by Lemma 4.6. Therefore, by Lemma 4.7, Ό~ι/2\ίη(βη — ß0) ~ 
N(0,1). 

EXERCISE 5.20 

Proof: We verify the conditions of Theorem 4.25. First we apply 
Theorem 5.19 and Proposition 5.1 to show that V -

1 / 2
A 2

_ 1 / 2
X ' € ~ 

N(0, I). Consider A ' V ^ / r ^ X ' c = n~1'2 Σ? = 1 k'\-x,2X'tet. By 
Theorem 3.49, { A ' V _ 1 / 2X , ' € , } is a mixing sequence with either 
φ{ηί) or a(m) of size r'l(r'—\\ r ' > l , given (ii). Further, 
E(À'\~l/2X'tet) = 0 given (iii.a), and application of Minkowski's 
inequality gives E(\X'\-ll2X'tet\

2r') < A < » for all t given (iii.b). 
Letting 

we have σαη—*\ uniformly in a given (iii.c). It follows from Theorem 
5.19 that n~l/2 Σ? β 1 A ' V ^ X f e = A'V-^fT^X'e ~ #(0,1). 
Hence, by Proposition 5.1, V ^ / T ^ X ' e ~ W(0,1). 

V "
1
/

2
« -

1
/

2
X

/
€ - \-

x
'
2
n-

x
'
2
X't = ( V - ^ V

1
/

2
 - I i V ^ / r ^ X ' c ± 0 

because V ~
1 / 2

V
1 /2

 —I is o(l) (hence o p(l)) by Definition 2.3 and 
\~l/2n~l/2X'e ~ 7V(0,1), which allows application of Lemma 4.6. It 
follows from Lemma 4.7 that 

Next, X ' X / w - M„ 0 by Corollary 3.48 and Theorem 2.24 given 
(iv.a). Given (iv.a) Mn is O(l) and d e t M „ > £ > 0 for all η 
sufficiently large given (iv.b). Hence, the conditions of Theorem 4.25 
are satisfied and the result follows. 

= λ'\-ι/2Υα>η\~
ι/2λ 

Now 

V - 1 / 2/ r 1 / 2X ' € ~ t f ( 0 , 1 ) . 
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EXERCISE 5.21: The following conditions are sufficient: 

(i') (a) y = ßly.l+ß2x + e; 

(b) lAl<i,lAI<°°; 
(ii') {(y,, x,)'} is a mixing sequence with either φ{τή) of size 

r'f(r' — 1), r' > 1, or a(m) of size r'/{r' — 1), r' > 1, where 
r' = r + J for some r ̂  1 and δ > 0; 

(iii') (a) £(€,) = 0 for all f, 
(b) £Ί€,Γ' < Δ < oo for all /; 
(c) E(etet-j) = 0,7 = 1, 2, . . . , and for all t; 
(d) V ^ v a r i , ! - " 2 Σ-+»+ι Χ , Ό where X ^ i y , . , , x,), 

V„ = V0„ and there exists V nonsingular such that 
\ a n — V — 0 as « —• 00 uniformly in a; 

(iv') (a) |χ,| < Δ < 0 0 for all t\ 
(b) Μ Λ = £ ( Χ ' Χ / Λ ) has det M „ > <5 > 0 for all « suf-

ficiently large. 

We verify the conditions of Exercise 5.20. Since et = yt — ß\yt-\ — 
ß2xt, it follows from Theorem 3.49 that {(X,, €,)'} = {(y,_!, x„ €,)'} is 
mixing with either φ{ηϊ) of size r'/(r' — 1), r' > 1, or a(m) of size 
r'/(r' — 1), r' > 1, given (ii'). Thus, condition (ii) of Exercise 5.20 is 
satisfied. 

Next consider condition (iii). Now E(xtet) = xtE(et) = 0 given 
(iii'.a). Also, by repeated substitution we can express y, as 

so that by Proposition 3.52 E(yt_let) = 0 given (iii'.a) and (iii'.c). 
Hence, E(X'te~) = (E{yt_xet\ E(xtet))' = 0 so that (iii.a) is satisfied. 
Turning to condition (iii.b) we have^lx^,! 2'' = \xt\

2r'E\et\
lr' < Δ' < oo 

given (iii'.b). Also E\yt_xet\
2r' < (£|y,_ J 4 0 1 / 2 (£|e, | 4 0 1 / 2 by the 

Cauchy-Schwartz inequality. Since E\et\
Ar' < Δ < oo given (iii'.b), it 

only remains to be shown that E\yt\
Ar' < oo. Applying Minkowski's 

inequality (see Exercise 3.53), 

j=0 j=0 

•i-A 
j=0 j=0 

= [(|/?2|Δ + Δ'/<*')/(1-|ΑΙ)Γ<°° 



Solution Set 217 

if and only if \ßx | < 1. Therefore, £|y,_ x€t\
2r' < 0 0 given (i') and (iv'.a) 

so that condition (iii.b) is satisfied. It remains to verify condition 
(iv.a). Now E\\2\r+Ô = | χ , | 2 ( Γ +< Δ2(Γ+<*> given (iv.a) and E\y2\r+S < oo 
as shown above. Hence, all conditions of Exercise 5.20 are satisfied so 
that the OLS estimate of (β χ, ß2) will be consistent and asymptotically 
normal. 

EXERCISE 5.26 

Proof: First, we apply Corollary 5.25 and Proposition 5.1 to show 
that V" 1 / 2Ar 1 / 2Z'e ~ N(0, I ) . Given (ih'.a), {Z'tet} is a martingale 
difference sequence with var(«~ 1 / 2Z'€) = \ n finite by (iii'.b) with 
det(V„)> δ>0 for all η sufficiently large given (iii'.c). Hence, 
consider vL'V- I / 2,r 1 / 2Z'€ = n~l/2 Σ%χ À'\-l/2Z'tet. Expressing 
X'\-xl2Z'tet as Σ£_ι Σ?_, XinZthieth, it follows from the additivity of 
conditional expectations that 

Ε(λ'V-^Zi^lS,-!) = Ü linE(Zthieth\%t_x) = 0 

h=\ i«=l 

since E(Zthieth\^t-x) = 0 given (iii.a). Applying Minkowski's inequal-
ity yields 

Ε\λ'\-»2Ζ'ι€ι\«<+» = Ε J) 2Χ,„Ζ ( Λ / € (Λ 

2(r+J) 

[ p k ~|2(r+<5) 

given (iii'.b). Now 

σ 2 = var(A ,V" 1/ 2«- 1/ 2Z ,€) 

= / l 'V- 1/ 2var(«- 1/ 2Z ,€)V- 1/ 2A= 1 

for all n sufficiently large. Next consider n~x Σ? = 1 

X'V- 1 / 2Z'€,€;Z,V- 1 / 2>1 Since {Ζ,'β,β,'Ζ,} is a mixing sequence with 
either φ(πι) of size r/(2r — 1 ), r > 1, or a(m) of size r/(r — 1 ), r > 1, by 
Theorem 3.49, it follows that n~l Σ? = 1 Z[ete[Zt - \ n 0 given 
(iii'.b). By Proposition 2.30, 
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t= 1 

= «-· 2 A'V-'/2Z;€,€('Z,V^,/2A- l -o. 

Hence, the sequence {À'\~x/2Z'tet} satisfies the conditions of Corol-
lary 5.25, and it follows that λ\-χ/2η~χ/2 Σ?_, Z'tet = λ'\-χ/2η-χ/2 

Z'e * #(0,1). By Proposition 5.1, \-χ/2η-χ/2Ζ'β ~ 7V(0,1). 
Now, given (ii'), (iv.a), and (iv.b), Z'X/n — Qn 0 by Corollary 

3.48 and Theorem 2.24. The remaining results follow as before. 

EXERCISE 6.2 

Proof: The following conditions are sufficient: 

(i) y = XÄ> + €; 
(ii) {(Ζ,, X,, €,)'} is a mixing sequence with either φ(ηί) of size 

r/(2r— 1), r > 1, or a(m) of size r/(r — 1), r > 1; 
(iii) (a) E(Ztgieth\%t_x) = 0 for all *, where { g , } is adapted to 

{Z^/€ iÄ}, ftA=l, . . . , A / = 1 , . . . , / ; 
(b) £|Ζ^·€,Α|

2 ( Γ +*> < Δ < oo and E\eth\
2
^ < Δ < oo for 

some 0 < δ < r, g , Λ = 1, . . . , / ? , / = 1, . . . , /, and 
all /; 

(c) E(ei€'i\Zt) = a2

0lp,t = 1, . . . 
(iv) (a) £|Z,A/|

2<'+*> < Δ < oo and £|Χ,Α/<'+*> < Δ < » for some 
δ>0, h= 1, . . . , p , / = 1, . . . , / , ; = 1,. . .fc,and 
all * ; 

(b) Q„ Ξ £"(Ζ' X/ri) has full column rank uniformly in η for 
all η sufficiently large; 

(c) L„ = E(Z'Z/n) has det L„ > δ > 0 for all η sufficiently 
large. 

Given conditions (i)-(iv), the asymptotically efficient estimator is 

ßn = & S L S = (X'ZiZ'Zr'Z'Xr'X'ZfZ'Zr'Z'y 

by Exercise 4.47. First consider Z'Z/n. Now {Ζ,'Ζ,} is a mixing 
sequence with the same size as {(Ζ,, X,, €,)'} by Proposition 3.50. 
Hence, by Corollary 3.48, Z'Z/n-Ln = n~x Σ? β 1 Z\Zt-n~x Σ%χ 

£(Z;Z,) J L J L- 0 given (iv.a) and Z'Z/n - L„ ̂  0 by Theorem 2.24. 
Next consider 
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δη = (ηρ)-\γ-Χβη)'(γ-Χβη) 

= (e - Χ(βη - β0)Υ(€ - Χ(βη - β0))/ηρ 

= e'elnp - 2(βη - ß0)'X'e/np + (#, -β0)'(Χ'Χ/η)(βη - β0)/ρ. 

Since the conditions of Exercise 3.80 are satisfied, it follows that 
Ä i - A - ^ O . Also, X'e/njs O a s.( l) by Corollary 3.48 given (ii), 
(iii.b), and (iv.a). Hence (ßn — ß0)X'e/n 0 by Exercise 2.22 and 
Theorem 2.24. Similarly, {Χ,'Χ,} a mixing sequence with size given in 
(ii) with elements satisfying the moment condition of Corollary 3.48 
given (iv.a), so that X'X/n is O a s.( l) and therefore (β„ - β0)'(Χ'Χ/ 
η) (βη — β0) 0. Finally, consider 

€'€/ηρ = ρ-*Ση->Σ*2η· 

Now for any h = 1, . . . , ρ, {e2

h} is a mixing sequence with φ(τή) of 
size r/(2r— 1), r > 1, or a(m) of size r/(r— 1), r> 1. Since {e2

h} 
satisfies the moment condition of Corollary 3.48 given (iii.b) and 
E(e2

h) = a\ given (iii.c), it follows that 

n~l t e2

h-η->Σ E(e2

h) = £ e2

h-a
2

o^0, Λ=1, . . . 

Hence, e'e/np al, and it follows that δ2 σ\ by Exercise 2.35. 

EXERCISE 6.6 

Proof: The proof is analogous to that of Theorem 6.3, and again we 
explicitly consider the case ρ = 1 for simplicity. We decompose 
\ n — \ n as follows: 

v„ - v„ = η-* χ €?z;z, - 2 £ (€

2z;z,) 

- 2 « - ' SiA -ArXie.ZJZ, 
/«= 1 

+ £ (Ä, -βοΥΧ ' ,χχβη -Ä)Z;Z,. 

Now {€2Z,'Z,} is a mixing sequence with either </>(m) of size r/(2r — 1 ), 
r ^ 1, or a(m) of size r/(r — 1 ), r > 1, given (ii) with elements satisfying 
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the moment condition of Corollary 3.48 given (iiib). Hence 

, τ 1 2 €2z;z, - n-x 2 £(6?z;z f) - o. 

The remaining terms converge to zero in probability as in Theorem 
6.3, where we now use results on mixing sequences in place of results 
on stationary, ergodic sequences. For example, by the Cauchy-
Schwartz inequality, 

E\XtKZtiZtjerô * ^ ( I X Ä ^ ' ^ d Z ^ I ^ ) ^ 

< Δ < o o 

given (iii.b) and (iv.a). Since {Χ^Ζ,,Ζ,,β,} is a mixing sequence with 
size given in (ii) and it satisfies the moment condition of Corollary 
3.48, it follows that 

n'1 £ ΧΖ,,-Ζ^,-Λ-' i £ ( X A W A 0 . 

Since βη — β0 —» 0 under the conditions given, we have 

n-^(ßn-ß0yX'tetZ>tZt±0 
t= ι 

by Exercise 2.35. Finally, consider the third term. The Cauchy-
Schwartz inequality gives E\XtKXaZtiZtj\

r+ô < <» so that 

i r ' J) XtKXaZtiZtj - , τ ' 2 £(X, KX,,Z, /Z, , . ) -0 

by Corollary 3.48. Thus the third term vanishes in probability and 
application of Exercise 2.35 yields \ n — V„ 0. 

EXERCISE 6.7 

Proof: The proof is immediate from Exercise 5.27 and Exercise 6.6. 

EXERCISE 6.8 

Proof: Conditions (i)-(iv) ensure that Exercise 6.6 holds for ßn and 
V „ - V w - ^ 0 . Next set P ^ V " 1 in Exercise 6.7. Then P„ = V"1 and 
the result follows. 
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EXERCISE 6.12 

Proof: Analogously to Theorem 6.9, consider 

We can proceed exactly as in Theorem 6.3 to show that each term 
above converges to zero in probability. Note that Theorem 3.49 is 
invoked to guarantee the summands are mixing sequences with size 
given in (ii), and the Cauchy-Schwartz inequality is used to verify the 
moment condition of Corollary 3.48. For example, given (ii) 
{et€t-TZ'tZt_T} is a mixing sequence with either φ(νή) of size 
r'l(2r' — 1), r' > 1, or a(m) of size r'l(r' — 1), r' > 1, with elements 
satisfying the moment condition of Corollary 3.48 given (iii.b). 
Hence 

The remaining terms can be shown to converge to zero in probability 
in a manner similar to Theorem 6.3. 

EXERCISE 6.13 

Proof: Immediate from Theorem 5.23 and Exercise 6.12. 

EXERCISE 6.14 

Proof: Conditions (i) - (iv) ensure that Exercise 6.12 holds forβη and 
V„ - V„ 0. Next set P„ = V"1 in Exercise 6.13. Then P„ = V"1 

and the result follows. 

EXERCISE 7.4 

Proof: Because €, = €, — Xt(ßn ~~ ßo),
 w e have 
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A η 

Σγη - Χ? = («,,/«)-'«-' ^ d„€,ê, - Σ, 

- ( V r ' / i - ' i ^ i Ä - Ä ) « ; 

The result will follow from Exercise 2.35 if we can show that each of 
the four terms above vanish in probability. 

Given (i) and (ii), it follows that 

(n,/rirln-1 2 ayt€t€[-E{nylnVn-' 2 £ ( ^ 7 ί ) Λ 0 

by Proposition 2.30. Now 

AT
1
 2 E{àytet€[) = η-

χ
 2 E{E{aytete[\Vit)) 

/ = 1 / = 1 

= η-1 J £(d„£(€,e;|W,)) 

= / I -
1 2£(d ,X y ) 

= J) £(d„) Χ Σ, 

= Ε(ηγ/η)ΧΣγ. 

Hence (ηγ/η)-ιη'ι Σ?_, dr,è,e,' - Σ, 0. 
Next consider 
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£d*X,(Ä , -A>)€i . 
/ = 1 

This can be written as the sum of k matrices with the g, hth element in 
the /th term (i = 1, . . . , k) equal to 

(ßngi -ßogi)n~l Σ àyfitgi*th-
/"=1 

Since ß M i " Ä ^ ^ O , g = 1, . . . , ρ, i = 1, . . . , k, and η~ι 

Z"i=ldytXtgiethisOp(\)forg,h= 1, i = 1, . . . ,k, it follows 
from Exercise 2.35 that 

«- i d A Ä . - A t ö - S . O . 
/ = 1 

The third term is the transpose of the second term, so it too converges 
in probability to zero. 

Finally, consider the last term 

n->JZd,X(ßn-ß0)(ßn-ß0yX't. 

This can be expressed as the sum of k2 matrices where the g, hth 
element of the /,yth term (/, 7 = 1, . . . , k) is 

(ßngi ~ßogi)(ßnhj - ßohj)n~X Σ a
Vt

X
tgi

X
thj-

Since λΓ1 Σ? = 1 d y /X^X / Ä 7isO p( l )for^, A = 1, . . . 9p,iJ = 1, . . . , 
k9 given (iv), it follows that 

n-^dYX(ßn-ß0)(ßn-ß0YX^O. 

It now follows from Exercise 2.35 that Ί,γη — Χγ 0. 
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